CAREER: Concurrent Robot Learning from Simulation and Real for Closing the Sim-to-real Gap

职业:机器人从模拟和真实中并行学习,以缩小模拟与真实的差距

基本信息

  • 批准号:
    2339076
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-08-01 至 2029-07-31
  • 项目状态:
    未结题

项目摘要

Legged robots, like robot dogs or humanoid robots, offer the possibility of being able to move well in indoor and outdoor tasks, such as rearranging furniture at home or monitoring factories. However, controlling these robots is difficult and comes with the risk of robots falling. In recent years, artificial intelligence (AI) has shown promise in addressing the falling challenge by using computer simulations when teaching robots how to walk. However, the robot behaviors learned in simulation often underperform in the real world due to the difference between the simulation and the real physical robot. This Faculty Early Career Development (CAREER) project supports research that investigates a novel approach that simultaneously learns from both simulated and physical experiments. This novel approach in this project aims to leverage the advantage of simulations, such as scalability, while using the data from real robots. Ultimately, the project will maximize the potential of AI and robot learning algorithms to allow more capable and safer robots. Additionally, the project incorporates educational activities to engage students with real-world robot learning environments, fostering a broader understanding of robotics.This project will investigate a novel class of learning algorithms, Learning from Multiverse (LfM), which concurrently learns from both large-scale, inexpensive physics-based simulation and expensive, real world ground-truths to bridge the well-known “sim-to-real” gap in legged robots. The fundamental principle of the project involves seamless and continuous learning from both simulated and real experiences, as well as structured mathematical reasoning of experimental data. This approach differs from the majority of existing learning algorithms that rely solely on either simulation or real-world experience. This research involves the development of three main components: (i) autonomous and safe learning environments in the real world, (ii) novel robot learning algorithms that simultaneously leverage simulation and reality, and (iii) explainable artificial intelligence to understand hardware experiments. This project will facilitate the development of challenging motor skills for safety-critical legged robots, such as quadrupedal robots with manipulators and bipeds, while ensuring effective, efficient, and safe robot learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有腿机器人,如机器狗或人形机器人,提供了在室内和室外任务中移动的可能性,例如在家里重新布置家具或监控工厂。然而,控制这些机器人是困难的,并伴随着机器人坠落的风险。近年来,人工智能(AI)通过在教机器人如何走路时使用计算机模拟来解决下降的挑战。然而,由于仿真和真实的物理机器人之间的差异,在仿真中学习的机器人行为在真实的世界中往往表现不佳。这个教师早期职业发展(CAREER)项目支持研究,研究一种新的方法,同时从模拟和物理实验中学习。该项目中的这种新方法旨在利用模拟的优势,例如可扩展性,同时使用来自真实的机器人的数据。最终,该项目将最大限度地发挥人工智能和机器人学习算法的潜力,以实现更强大、更安全的机器人。此外,该项目还纳入了教育活动,让学生接触真实世界的机器人学习环境,从而促进对机器人技术更广泛的了解。该项目将研究一类新型学习算法,即从多元宇宙中学习(LfM),该算法同时从大规模、廉价的基于物理的模拟和昂贵的、真实的世界地面事实中学习,以弥合腿式机器人中众所周知的“模拟到真实的”差距。该项目的基本原则包括从模拟和真实的经验中无缝和连续地学习,以及对实验数据进行结构化的数学推理。这种方法不同于大多数现有的学习算法,这些算法仅仅依赖于模拟或真实世界的经验。这项研究涉及三个主要组成部分的发展:(i)自主和安全的学习环境在真实的世界,(ii)新的机器人学习算法,同时利用模拟和现实,和(iii)可解释的人工智能理解硬件实验。该项目将促进安全关键型腿式机器人(如带机械手和两足机器人的四足机器人)具有挑战性的运动技能的发展,同时确保有效、高效和安全的机器人学习。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sehoon Ha其他文献

Solving Challenging Control Problems via Learning-based Motion Planning and Imitation
通过基于学习的运动规划和模仿解决具有挑战性的控制问题
Understanding human-robot proxemic norms in construction: How do humans navigate around robots?
了解建筑中的人机邻近规范:人类如何在机器人周围导航?
  • DOI:
    10.1016/j.autcon.2024.105455
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Yeseul Kim;Seongyong Kim;Yilong Chen;HyunJin Yang;Seungwoo Kim;Sehoon Ha;Matthew Gombolay;Yonghan Ahn;Yong Kwon Cho
  • 通讯作者:
    Yong Kwon Cho
Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation
按完成时间衡量成功:体现导航的动态感知评估标准
Learning manipulation of steep granular slopes for fast Mini Rover turning
学习操纵陡峭的颗粒斜坡以实现迷你漫游车的快速转弯
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deniz Kerimoglu;Daniel Soto;Malone Hemsley;Joseph S. Brunner;Sehoon Ha;Tingnan Zhang;Daniel I. Goldman
  • 通讯作者:
    Daniel I. Goldman
Transforming a Quadruped into a Guide Robot for the Visually Impaired: Formalizing Wayfinding, Interaction Modeling, and Safety Mechanism
将四足动物转变为视障人士的引导机器人:形式化寻路、交互建模和安全机制
  • DOI:
    10.48550/arxiv.2306.14055
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kim;Wenhao Yu;Yash Kothari;Jie Tan;Greg Turk;Sehoon Ha
  • 通讯作者:
    Sehoon Ha

Sehoon Ha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sehoon Ha', 18)}}的其他基金

NRI: INT: Collaborative Research: Buoyancy-assisted Collaborative Robots That are Cheap, Safe, and Never Fall Down.
NRI:INT:协作研究:廉价、安全且永不摔倒的浮力辅助协作机器人。
  • 批准号:
    2024768
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

VLSI并发式(CONCURRENT)阵列声纳信号处理系统
  • 批准号:
    68880207
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348642
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
  • 批准号:
    2345898
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Re-envisioning alt text for education through concurrent authoring and diagram design
SBIR 第一阶段:通过并行创作和图表设计重新构想教育替代文本
  • 批准号:
    2221722
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Concurrent multi-organ responses to chronic physical activity and inactivity intervention to increase research discovery in human health and wellbeing
对慢性身体活动和不活动干预的并发多器官反应,以增加人类健康和福祉的研究发现
  • 批准号:
    BB/X015173/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
  • 批准号:
    10727499
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
  • 批准号:
    10696409
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
SHF: Small: Modular Automated Verification of Concurrent Data Structures
SHF:小型:并发数据结构的模块化自动验证
  • 批准号:
    2304758
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Safe and secure COncurrent programming for adVancEd aRchiTectures (COVERT)
安全可靠的高级架构并发编程 (COVERT)
  • 批准号:
    EP/X015149/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Safe and secure COncurrent programming for adVancEd aRchiTectures (COVERT)
安全可靠的高级架构并发编程 (COVERT)
  • 批准号:
    EP/X015076/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了