CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment

职业:健康领域的道德机器学习:数据、学习和部署的稳健性

基本信息

  • 批准号:
    2339381
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Health is an area of immense potential for machine learning (ML), due to the increasing complexity of care management and large volume of data becoming available. Recent work has shown that models in healthcare lack robustness, and do not perform equally well across all patients and settings. Recent work in general model robustness have failed to translate to health settings in part because they do not consider the diversity of patients, conditions, and contexts that models will be used in. This project will create new ways to improve model robustness, and empower researchers to target more ethical deployments. This research will identify improvements for data use and model training that prioritize actionable models in health, by focusing on the nuance and complexity of health data. Ultimately these advances will also contribute to machine learning in other high-stakes areas such as lending, education and legal systems, that rely on routinely collected data to generate insights. Beyond the direct and long-term societal impact of these advances, this work will help lay the foundation for a new undergraduate-focused summer course focusing on bringing a larger, and more diverse, pipeline of students into machine learning in health. The importance of patient safety combined with poor model robustness limits the practical utility of ML in healthcare, and ethical deployment requires developing methods and metrics to ensure state-of-the-art models are robust. This project targets three ways to develop robust health models: ensuring representations and downstream models withstand incorrect data associations, achieving fair and robust model learning, and enhancing post-hoc robustness to outlier data during testing. First, targeting representational robustness to data error and change, it will build resilient models across patient subpopulations and variations in care through contrastive self-supervision in deep metric models. Second, in model learning, it will improve algorithms for stable training, balancing fairness/robustness trade-offs by combining private and public data for clinical prediction tasks. Third, it will target test-time methods for outlier detection and extending pre-trained models to cover minority subgroups. The project will result in methods that address robustness in data, learning, and testing, as crucial steps toward ethically deploying health models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
健康是机器学习(ML)的一个巨大潜力领域,因为护理管理的复杂性越来越高,并且有大量的数据可用。最近的研究表明,医疗保健中的模型缺乏鲁棒性,并且在所有患者和环境中的表现并不相同。最近在一般模型鲁棒性方面的工作未能转化为健康环境,部分原因是他们没有考虑模型将用于的患者,条件和背景的多样性。该项目将创造新的方法来提高模型的鲁棒性,并使研究人员能够针对更多的道德部署。这项研究将通过关注健康数据的细微差别和复杂性,确定数据使用和模型训练的改进,优先考虑健康方面的可操作模型。最终,这些进步也将有助于其他高风险领域的机器学习,如贷款、教育和法律的系统,这些领域依赖于定期收集的数据来产生见解。除了这些进步的直接和长期社会影响外,这项工作还将有助于为一个新的以本科生为中心的暑期课程奠定基础,该课程的重点是将更大,更多样化的学生引入健康机器学习。患者安全的重要性加上模型鲁棒性差限制了ML在医疗保健中的实际应用,而道德部署需要开发方法和指标,以确保最先进的模型是鲁棒的。该项目针对三种方法来开发健壮的健康模型:确保表示和下游模型能够承受不正确的数据关联,实现公平和健壮的模型学习,以及在测试期间增强对离群数据的事后鲁棒性。首先,针对数据错误和变化的代表性鲁棒性,它将通过深度度量模型中的对比自我监督,在患者亚群和护理变化中建立弹性模型。其次,在模型学习方面,它将改进稳定训练的算法,通过结合私人和公共数据进行临床预测任务来平衡公平性/鲁棒性权衡。第三,它将针对异常值检测的测试时间方法,并扩展预先训练的模型以覆盖少数群体。该项目将产生解决数据、学习和测试鲁棒性的方法,作为在道德上部署健康模型的关键步骤。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marzyeh Ghassemi其他文献

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review
  • DOI:
    10.1186/s12889-024-21081-9
  • 发表时间:
    2024-12-28
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Sharon Birdi;Roxana Rabet;Steve Durant;Atushi Patel;Tina Vosoughi;Mahek Shergill;Christy Costanian;Carolyn P. Ziegler;Shehzad Ali;David Buckeridge;Marzyeh Ghassemi;Jennifer Gibson;Ava John-Baptiste;Jillian Macklin;Melissa McCradden;Kwame McKenzie;Sharmistha Mishra;Parisa Naraei;Akwasi Owusu-Bempah;Laura Rosella;James Shaw;Ross Upshur;Andrew D. Pinto
  • 通讯作者:
    Andrew D. Pinto
Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study
大语言模型辅助对患者阅读临床笔记的影响:一项混合方法研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niklas Mannhardt;Elizabeth Bondi;Barbara Lam;Chloe O'Connell;M. Asiedu;Hussein Mozannar;Monica Agrawal;Alejandro Buendia;Tatiana Urman;I. Riaz;Catherine E. Ricciardi;Marzyeh Ghassemi;David Sontag
  • 通讯作者:
    David Sontag
Large language model integrations in cancer decision-making: a systematic review and meta-analysis
癌症决策中的大型语言模型整合:系统综述与荟萃分析
  • DOI:
    10.1038/s41746-025-01824-7
  • 发表时间:
    2025-07-17
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Yuexing Hao;Zhiwen Qiu;Jason Holmes;Corinna E. Löckenhoff;Wei Liu;Marzyeh Ghassemi;Saleh Kalantari
  • 通讯作者:
    Saleh Kalantari
Views Can Be Deceiving: Improved SSL Through Feature Space Augmentation
视图可能具有欺骗性:通过特征空间增强改进 SSL
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kimia Hamidieh;Haoran Zhang;Swami Sankaranarayanan;Marzyeh Ghassemi
  • 通讯作者:
    Marzyeh Ghassemi
Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction
用于可解释临床时间序列预测的公平多模式检查表
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qixuan Jin;Haoran Zhang;Tom Hartvigsen;Marzyeh Ghassemi
  • 通讯作者:
    Marzyeh Ghassemi

Marzyeh Ghassemi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

"Ethical Review to Support Responsible AI in Policing - A Preliminary Study of West Midlands Police's Specialist Data Ethics Review Committee "
“支持警务中负责任的人工智能的道德审查——西米德兰兹郡警察专家数据道德审查委员会的初步研究”
  • 批准号:
    AH/Z505626/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Integrating Spiritual, Moral and Ethical Considerations into Science Communication for Improved Decision Making and Public Action on Climate Science
将精神、道德和伦理考虑纳入科学传播,以改进气候科学的决策和公共行动
  • 批准号:
    2318681
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Trustworthy and Ethical Assurance of Digital Twins (TEA-DT)
数字孪生的可信和道德保证 (TEA-DT)
  • 批准号:
    AH/Z505663/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Education DCL: EAGER: An Embedded Case Study Approach for Broadening Students' Mindset for Ethical and Responsible Cybersecurity
教育 DCL:EAGER:一种嵌入式案例研究方法,用于拓宽学生道德和负责任的网络安全思维
  • 批准号:
    2335636
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Evaluating scientific and ethical approaches to newborn screening with whole genome sequencing using large-scale population cohorts
使用大规模人群队列评估通过全基因组测序进行新生儿筛查的科学和伦理方法
  • 批准号:
    MR/X021351/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
The AI Advantage: Developing Trusted, Ethical & Accessible AI Augmented Human Decision Making & Automation for SMBs
人工智能的优势:发展值得信赖、道德的
  • 批准号:
    10076405
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant for R&D
The influence of ethical and social values on decision-making about participation in personalized breast cancer screening: A constructivist grounded theory study of South Asian people in Canada
伦理和社会价值观对参与个性化乳腺癌筛查决策的影响:针对加拿大南亚人的建构主义扎根理论研究
  • 批准号:
    491227
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship Programs
Indigenizing Health Research Ethics in British Columbia with Indigenous Communities, Collectives and Organizations: Co-Create Wise Practices & Distinctions-Based Ethical Protocols in Indigenous Health Research
不列颠哥伦比亚省与土著社区、集体和组织的本土化健康研究伦理:共同创造明智的实践
  • 批准号:
    479951
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Operating Grants
The ethical considerations of age-related technologies in promoting health and well-being of older adults
与年龄相关的技术在促进老年人健康和福祉方面的伦理考虑
  • 批准号:
    497988
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了