CAREER: Experimental Determination and Fundamental Theory of Mesoscopic Transport and Intrinsic Kinetics in CO2 Electrocatalysis

职业:二氧化碳电催化中介观输运和本征动力学的实验测定和基础理论

基本信息

  • 批准号:
    2339693
  • 负责人:
  • 金额:
    $ 68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

The transformation of carbon dioxide (CO2) to fuels and chemicals using CO2 electrolyzers is a promising path forward for the electrification of the chemical manufacturing industry and the manufacturing of synthetic fuels for energy storage at a global scale. CO2 electrolyzers powered by electrons generated from wind and solar are key enabling technologies to achieve a zero-emissions future. Among the various metals studied for the electrochemical transformation of CO2, copper is the only single-element metal known to efficiently catalyze the production of multi-carbon oxygenates and hydrocarbons. There is still no consensus on how copper catalyzes this transformation. The rational design of future large-scale CO2 electrolyzers requires information on thermodynamics and reaction-transport kinetics. This project will address the research need of insufficient information on the reaction-transport kinetics on the copper catalyst system. This project will integrate results from research efforts into the training of undergraduate and graduate students at UCLA while also coordinating outreach activities to community colleges, minority serving institutions, national labs, and industries in California. The education and broadening impact activities include: i) development of a two year-summer research experience for chemical engineering undergraduate students. ii) outreach to industry and involvement of a diverse group of undergraduate and graduate students in research workshops and collaborations, and iii) introduction of electrochemical engineering concepts, cells, and theories developed in this proposal in the undergraduate chemical engineering capstone course, and the electrochemical processes course taught by the PI. Recently, it has become evident that transport is on equal footing with intrinsic catalytic kinetics of copper active sites in determining reaction mechanisms and product distributions of CO2 electroreductions, and thus a detailed extraction of reaction kinetics under well-defined mass, heat and charge transport conditions is necessary. This fundamental engineering research project addresses the critical need for the determination and modeling of mesoscopic transport and reaction kinetics relevant to CO2 electrocatalysis by combining: i) reactor design and characterization, ii) accelerated collection, ingestion, and contextualization of large experimental datasets to enable the decoupling of transport contributions from CO2 reduction kinetics, and iii) the development and parametrization of multi-scale reaction-transport models. The reaction-transport model developed here will be the first of its kind for electrochemical CO2 reduction and should enable the future rational design and scale-up of CO2 electrolyzers. The research will explore how mass, heat and charge transport determine product selectivity in CO2 reduction and will develop the fundamental theory and tools needed to build a reaction-transport model of electrocatalytic processes on copper electrodes. Electrochemical cells with well-defined transport properties will be utilized as tools to generate large experimental datasets of correlations between six experimental variables (applied potential, transport characteristics in the cell, electrolyte composition, temperature, pressure and catalyst porosity) and the production rates for 16 different liquid and gas products on copper catalysts. This large dataset will be of high quality and will be used to determine the underlying CO2 reduction mechanism on copper electrodes and the contribution of external and internal mass, heat and charge transport effects on the generation of different product distributions observed on catalysts with different porosities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用CO2电解槽将CO2转化为燃料和化学品是化学制造业电气化和在全球范围内制造用于储能的合成燃料的一条有前途的道路。由风能和太阳能产生的电子驱动的二氧化碳电解槽是实现零排放未来的关键技术。在研究用于CO2电化学转化的各种金属中,铜是已知的唯一有效催化多碳含氧化合物和烃类生产的单元素金属。关于铜如何催化这种转变,目前仍没有达成共识。未来大型CO2电解槽的合理设计需要热力学和反应-传输动力学方面的信息。本计画将针对铜系触媒反应传递动力学资料不足的研究需求。该项目将把研究工作的成果纳入加州大学洛杉矶分校本科生和研究生的培训,同时还将协调社区学院、少数民族服务机构、国家实验室和加州工业的外展活动。教育和扩大影响的活动包括:i)为化学工程本科生开发两年的暑期研究经验。ii)推广到工业和参与研究研讨会和合作的本科生和研究生的多元化群体,以及iii)在本科化学工程顶点课程和PI教授的电化学过程课程中引入电化学工程概念,细胞和理论。最近,它已成为显而易见的是,运输是平等的立足点与铜活性位点的内在催化动力学在确定CO2电还原的反应机理和产物分布,因此,详细提取反应动力学下定义的质量,热量和电荷传输条件是必要的。这个基础工程研究项目通过结合以下内容,解决了与CO2电催化相关的介观传输和反应动力学的确定和建模的关键需求:i)反应器设计和表征,ii)加速大型实验数据集的收集、摄取和情境化,以使运输贡献与CO2还原动力学脱钩,和iii)多尺度反应-传输模型的开发和参数化。这里开发的反应传输模型将是第一个电化学CO2还原,并应使未来的合理设计和规模扩大的CO2电解槽。该研究将探索质量,热量和电荷传输如何决定CO2还原中的产品选择性,并将开发建立铜电极上电催化过程的反应-传输模型所需的基本理论和工具。具有明确的传输特性的电化学电池将被用作工具,以生成六个实验变量(施加的电势、电池中的传输特性、电解质成分、温度、压力和催化剂孔隙率)与铜催化剂上的16种不同液体和气体产物的生产速率之间的相关性的大型实验数据集。这个大型数据集将具有高质量,并将用于确定铜电极上的潜在CO2还原机制以及外部和内部质量的贡献,在具有不同孔隙率的催化剂上观察到的热和电荷传输对产生不同产物分布的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估而被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Morales-Guio其他文献

Carlos Morales-Guio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Experimental determination of the partitioning of Zn, Pb, and Cu between brine and dolomite at temperatures and pressures of sediment-hosted base metal ore deposit formation
沉积物基底金属矿床形成温度和压力下卤水和白云石之间 Zn、Pb 和 Cu 分配的实验测定
  • 批准号:
    2114403
  • 财政年份:
    2022
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Design of a test rig for experimental Determination of Repulsion Force Generated by Magnetic Eddy Current Brake for Aircraft Applications
飞机应用磁涡流制动器产生的斥力实验测定试验台设计
  • 批准号:
    566868-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 68万
  • 项目类别:
    Applied Research and Development Grants - Level 1
DMS/NIGMS 1: An Experimental Mathematical Framework for understanding and Controlling Regulatory Delay in Self- Nonself Determination in the Immune System
DMS/NIGMS 1:理解和控制免疫系统自我非自我决定调节延迟的实验数学框架
  • 批准号:
    10684080
  • 财政年份:
    2021
  • 资助金额:
    $ 68万
  • 项目类别:
DMS/NIGMS 1: An Experimental Mathematical Framework for understanding and Controlling Regulatory Delay in Self- Nonself Determination in the Immune System
DMS/NIGMS 1:理解和控制免疫系统自我非自我决定调节延迟的实验数学框架
  • 批准号:
    10378783
  • 财政年份:
    2021
  • 资助金额:
    $ 68万
  • 项目类别:
Collaborative Research: LTREB: Experimental determination of trophic dynamics and energy flows in a semiarid habitat in Chile.
合作研究:LTREB:智利半干旱栖息地营养动态和能量流的实验测定。
  • 批准号:
    2025816
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental Determination of the Influence of Water on the Strength of Rocks
合作研究:水对岩石强度影响的实验测定
  • 批准号:
    2020880
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Standard Grant
Niobium, zirconium, titanium, and rare earth elements in alkaline silica-undersatured magmas: experimental determination of solubility, complexation and phase relations and implications for the formation of magmatic Nb-Zr-REE deposits
碱性二氧化硅-欠饱和岩浆中的铌、锆、钛和稀土元素:溶解度、络合和相关系的实验测定以及对岩浆铌-锆-稀土矿床形成的影响
  • 批准号:
    441268636
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Priority Programmes
Collaborative Research: Experimental determination of the influence of water on the viscosity of rocks
合作研究:水对岩石粘度影响的实验测定
  • 批准号:
    2022433
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
Collaborative Research: LTREB: Experimental determination of trophic dynamics and energy flows in a semiarid habitat in Chile
合作研究:LTREB:智利半干旱栖息地营养动态和能量流的实验测定
  • 批准号:
    2026294
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Continuing Grant
Experimental determination of the transition energy with a cold molecular ion beam toward molecular ion clock development
实验测定冷分子离子束的跃迁能量以促进分子离子钟的发展
  • 批准号:
    20K20110
  • 财政年份:
    2020
  • 资助金额:
    $ 68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了