CAREER: Cyberinfrastructure for Printable Multifunctional Microstructural Materials
职业:可打印多功能微结构材料的网络基础设施
基本信息
- 批准号:2339764
- 负责人:
- 金额:$ 55.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-15 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, material discovery has undergone revolutionary change due to the advent of advanced manufacturing and rapid progress in Integrated Computational Material Design fueled by advanced machine learning tools and high-performance computing. Additive manufacturing promises precise control over materials’ microstructures and properties; however, lab-to-market development has been impeded by computational limitations, and this must be addressed to maintain US competitiveness in the global materials market. This NSF CAREER project solves the four critical computational challenges of inefficiency, expense, overreliance on data, and manufacturing uncertainties by developing and deploying a novel cyberinfrastructure for designing printable materials with desirable multifunctional properties. This approach transforms the current paradigm of material development, allowing for the novel generation of microstructural geometries, precise and efficient numerical methods for material characterization, and a robust physics-aware generative model. Beyond practical advancements in additive manufacturing, this project contributes significantly to materials science by predicting the microstructure status of new materials for applications ranging from robotics and aerospace to high-frequency communications, sensors, power sources, thermal management, energy harvesting, and medical implants. The project trains students at all levels and professionals in a multidisciplinary environment that prepares them to contribute solutions to problems at the intersection of machine learning, high-performance computing, materials science, computational mechanics, and additive manufacturing. The research results will be publicly available as open-source software to the broader community, with comprehensive documentation on the design and usage to help users from all domains.This project will significantly enhance the Integrated Computational Materials Engineering (ICME) field in four key areas. The first research thrust develop a universal, cross-platform, parallelized in silico voxelized microstructure generator, offering a dataset of various morphologies that lead to distinct properties and manufacturability. The second thrust establishes two numerical methods for material characterization both aimed at increased computational efficiencies compared with conventional numerical methods. For piezoelectric property, a new energy formulation for solving coupled electromechanical homogenization through a Fast Fourier Transform numerical method is presented. For mechanical property, a coupled peridynamics physics-informed neural solver is introduced. The third thrust designs TransVNet, a unique architecture combining a variational autoencoder with convolutional neural layers, enhanced by a vision transformer, for bi-directional structure-property mapping learning. The fourth thrust validates the material design cyberinfrastructure by fabricating and testing the 3D representation of the material. The research is integrated into the Iowa State University curriculum by implementing Material Microstructure Explorer (PyMME) Cyberinfrastructure in the ANSYS Ecosystem, developing a Project-Based Learning (PBL) module for the Make To Innovate (M:2:I) undergraduate program, a graduate material informatics course, a Virtual Material Explorer Lab for K-12 and engaging students in innovative projects and product development. This project is jointly funded by OAC and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,由于先进制造的出现以及先进机器学习工具和高性能计算推动的集成计算材料设计的快速发展,材料发现发生了革命性的变化。增材制造承诺对材料的微观结构和性能进行精确控制;然而,实验室到市场的发展受到计算限制的阻碍,必须解决这一问题,以保持美国在全球材料市场的竞争力。这个NSF CAREER项目通过开发和部署一种新型网络基础设施来设计具有理想多功能特性的可打印材料,解决了低效率、费用、过度依赖数据和制造不确定性等四个关键计算挑战。这种方法改变了当前的材料开发模式,允许新一代的微观结构几何形状,精确和有效的数值方法,材料表征,以及强大的物理感知生成模型。除了增材制造的实际进展之外,该项目还通过预测新材料的微观结构状态对材料科学做出了重大贡献,这些材料的应用范围从机器人和航空航天到高频通信,传感器,电源,热管理,能量收集和医疗植入物。该项目在多学科环境中培养各级学生和专业人员,使他们能够为机器学习,高性能计算,材料科学,计算力学和增材制造的交叉问题提供解决方案。研究结果将作为开源软件向更广泛的社区公开,并提供有关设计和使用的全面文档,以帮助来自所有领域的用户。该项目将在四个关键领域显着增强集成计算材料工程(ICME)领域。第一个研究重点是开发一个通用的,跨平台的,并行化的硅体素化微结构生成器,提供一个数据集的各种形态,导致不同的属性和可制造性。第二个推力建立了两个数值方法的材料特性,旨在提高计算效率相比,传统的数值方法。针对压电材料,提出了一种新的能量公式,并利用快速傅立叶变换数值方法求解了耦合均匀化问题。对于力学性能,引入了耦合动力学物理信息的神经求解器。第三个推力设计了TransVNet,这是一种独特的架构,将变分自动编码器与卷积神经层相结合,通过视觉Transformer进行增强,用于双向结构-属性映射学习。第四个推力通过制造和测试材料的3D表示来验证材料设计网络基础设施。该研究被整合到爱荷华州州立大学的课程中,通过在ANSYS生态系统中实施材料微结构探索者(PyMME)网络基础设施,为创新(M:2:I)本科课程开发基于项目的学习(PBL)模块,研究生材料信息学课程,K-12虚拟材料探索者实验室,并让学生参与创新项目和产品开发。该项目由OAC和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azadeh Sheidaei其他文献
Azadeh Sheidaei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
- 批准号:
2345749 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
- 批准号:
2346712 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
- 批准号:
2425778 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Data-enabled Pathways to Equity in Cyberinfrastructure Utilization for Scientific Discovery
利用数据实现科学发现的网络基础设施公平之路
- 批准号:
2346631 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Conference: Cyberinfrastructure Leadership Academy: Team Science and Grand Challenges
会议:网络基础设施领导学院:团队科学和重大挑战
- 批准号:
2414440 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320980 - 财政年份:2024
- 资助金额:
$ 55.37万 - 项目类别:
Standard Grant