CAREER: Insertion-Based Natural Language Generation

职业:基于插入的自然语言生成

基本信息

  • 批准号:
    2339766
  • 负责人:
  • 金额:
    $ 58.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2029-04-30
  • 项目状态:
    未结题

项目摘要

AbstractLanguage models (LMs) have become the foundations of most natural language processing (NLP) applications nowadays. However, existing language models predominantly follow the auto-regressive paradigm, which trains models to predict the next word given the left-side context. Then, they generate sentences word-by-word, left-to-right. The simplicity of this paradigm is attractive but it has several limitations, including inefficiency in generation, lack of reliable control for human-machine collaboration, and more importantly, it significantly deviates from how humans interpret and compose sentences. The proposed research explores a fundamentally distinct paradigm of language modeling --- insertion-based models. Such models formulate the generation process as iteratively inserting words into an incomplete context, offering significantly more flexibility and controllability compared to the auto-regressive models. The insertion-based formulation better mimics human writing behaviors and thus provides a tool for computational linguistics and cognitive science to study the structure of languages. The controllability of the model will benefit communication researchers, content creators, and creative composers for applications such as creative content generation, tailored communication, and personalized user experiences. The research results will be integrated in teaching materials to disseminate generative artificial intelligence (AI) for K-12 and undergraduate. This project aims to advance our understandings of the benefits and capability of insertion-based LMs. The proposed research will explore different generation orders supported by the flexibility of the insertion-based formulation, with the goal to discover optimal insertion orders guided by linguistic theories. Additionally, the project will introduce a novel model architecture for a variation of insertion-based LMs that incorporates deletion operations, enabling the models to rectify previous generation errors. This enhancement brings added flexibility and controllability to insertion-based LMs. Furthermore, an ambitious goal of this research is to investigate the scaling law and scale up the pretraining of insertion-based LMs. The success of these explorations has the potential to lead to a family of large language models that exhibit enhanced flexibility, controllability, and inference efficiency surpassing the auto-regressive LMs, resulting in benefits for a wide range of natural language generation and general NLP tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要语言模型(LM)已成为当今大多数自然语言处理(NLP)应用的基础。然而,现有的语言模型主要遵循自回归范式,该范式训练模型在给定左侧上下文的情况下预测下一个单词。然后,他们从左到右逐字逐句地生成句子。这种范式的简单性很有吸引力,但它有几个局限性,包括生成效率低下,缺乏对人机协作的可靠控制,更重要的是,它严重偏离了人类解释和撰写句子的方式。本研究探索了一种完全不同的语言建模范式-基于插入的模型。这种模型将生成过程表述为迭代地将单词插入到不完整的上下文中,与自回归模型相比,提供了更大的灵活性和可控性。这种基于插入的表达方式更好地模拟了人类的书写行为,为计算语言学和认知科学研究语言结构提供了一种工具。该模型的可控性将有利于通信研究人员,内容创作者和创意作曲家的应用,如创意内容生成,定制通信和个性化用户体验。研究成果将被整合到教材中,为K-12和本科生传播生成式人工智能(AI)。本项目旨在提高我们对基于插入的LM的优点和能力的理解。该研究将探索不同的生成顺序支持的灵活性的插入为基础的配方,以发现最佳的插入顺序的语言学理论指导的目标。此外,该项目将为基于插入的LM的变体引入一种新的模型架构,该架构包含删除操作,使模型能够纠正上一代错误。这种增强为基于插入的LM带来了额外的灵活性和可控性。此外,本研究的一个雄心勃勃的目标是研究缩放律并扩大基于插入的LM的预训练。这些探索的成功有可能导致一系列大型语言模型,这些模型表现出增强的灵活性,可控性和推理效率,超过自回归LM,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nanyun Peng其他文献

Controllable Text Generation for Open-Domain Creativity and Fairness
可控文本生成以实现开放域创造力和公平性
  • DOI:
    10.24963/ijcai.2022/818
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nanyun Peng
  • 通讯作者:
    Nanyun Peng
A MBI P UN : Generating Puns with Ambiguous Context
MBI 双关语:产生语境模糊的双关语
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anirudh Mittal;Yufei Tian;Nanyun Peng
  • 通讯作者:
    Nanyun Peng
Adaptable Logical Control for Large Language Models
大型语言模型的自适应逻辑控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Honghua Zhang;Po;Masahiro Yoshida;Guy Van den Broeck;Nanyun Peng
  • 通讯作者:
    Nanyun Peng
Zero-shot Commonsense Question Answering with Cloze Translation and Consistency Optimization
通过完形填空翻译和一致性优化进行零样本常识问答
  • DOI:
    10.1609/aaai.v36i10.21301
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zi;Nanyun Peng
  • 通讯作者:
    Nanyun Peng
Creative Natural Language Generation
创造性的自然语言生成

Nanyun Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

SBIR Phase I: Directed evolution of site-specific bacterial transposase genes to alter specificity and efficiency of insertion of large DNA segments into restorable gene fusions
SBIR 第一阶段:位点特异性细菌转座酶基因的定向进化,以改变大 DNA 片段插入可恢复基因融合的特异性和效率
  • 批准号:
    2234291
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
    Standard Grant
Elucidation of the mechanism of acquired resistance to novel TKIs for EGFR/HER2 exon 20 insertion models
阐明 EGFR/HER2 外显子 20 插入模型对新型 TKI 获得性耐药的机制
  • 批准号:
    23K15569
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Leveraging CRISPR RNA-guided DNA Transposases for Gene Insertion at the CFTR Locus
利用 CRISPR RNA 引导的 DNA 转座酶在 CFTR 基因座插入基因
  • 批准号:
    10606698
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Development of an Oscillated Insertion tool to Eliminate Surgically Induced Neurodegeneration for Optical Neuroimaging of Cognitive Aging and Dementia
开发振荡插入工具以消除手术引起的神经变性,用于认知衰老和痴呆的光学神经成像
  • 批准号:
    10792064
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Vaginal Simulator for the Development of Vaginal Insertion Items and Portable Vaginal Pressure Measurement Devices
用于开发阴道插入物品和便携式阴道压力测量设备的阴道模拟器
  • 批准号:
    23KJ0265
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Target Insertion Amplification and Sequence (TIAS): A novel targeted sequencing technology that performs rapid target enrichment and next generation sequencing sample preparation simultaneously
靶标插入扩增和测序(TIAS):一种新颖的靶向测序技术,可同时进行快速靶标富集和下一代测序样品制备
  • 批准号:
    10758909
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Generating evidence to improve same-day etonogestrel implant insertion for emergency contraception
生成证据以改善紧急避孕的当天依托孕烯埋植剂植入
  • 批准号:
    10561005
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
The Interrelationship Between Friction and Fracture in Needle Insertion
进针时摩擦与断裂的相互关系
  • 批准号:
    2219787
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
    Standard Grant
Structural and Biological Effects of Ribonucleotide Insertion into Telomeres
核糖核苷酸插入端粒的结构和生物学效应
  • 批准号:
    10750783
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
Elucidating the Molecular Mechanisms of Conformational Switching during Protein Insertion into Membranes
阐明蛋白质插入膜过程中构象转换的分子机制
  • 批准号:
    10737458
  • 财政年份:
    2023
  • 资助金额:
    $ 58.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了