CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems

职业:基于解释的多样化信息检索优化以增强人工智能系统

基本信息

  • 批准号:
    2339932
  • 负责人:
  • 金额:
    $ 59.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

Large generative artificial intelligence (AI) models, such as ChatGPT, are widely used for information seeking—helping people find information on a topic. Compared to traditional search engines, they provide a coherent narrative, which could potentially facilitate the exploratory phase of users' searches. Generative AI responses are more readable, coherent, and contextually appropriate; hence, they sound authoritative and definitive. However, existing generative AI models are subject to problems such as hallucinations, unsupported misleading answers, outright misinformation, and hidden biases. Another issue is that the majority of user queries are ambiguous. Current systems, including those that employ generative AI models, do not appropriately consider ambiguity by providing users with alternative answers to their queries. The vision of this project is to enable users to use generative AI models to obtain an interpretable, diverse, and unbiased set of alternative answers, viewpoints, subtopics, or aspects as required for various questions or tasks in information access, where each distinct answer or viewpoint is faithfully attributable to a set of evidence and supporting information sources. This project aims to make information access easier, more effective, and more trustworthy for users. Given that search is among the most common online activities, this project is positioned to have a substantial impact on society, promoting a more comprehensive understanding of topics, encouraging critical thinking, and facilitating informed decision-making.To achieve the above goal, this project proposes the development of novel retrieval models to enhance the relevance, diversity, and interpretability of their results. This project will develop models for multi-granular diversification of search results to significantly improve the generalizability of retrieval models in providing diverse results for open-domain queries. In addition, this project enables the full utilization of search results by AI systems through explanations of their relevance and diversity. Building on top of explainable search results, the project introduces explanation-based optimization of search results. This involves improving search results based on reasoning over failures of retrieval models. The resulting retrieval systems will be particularly useful for augmenting large generative AI models through access to explainable explicit knowledge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型生成式人工智能(AI)模型,如ChatGPT,被广泛用于信息搜索-帮助人们找到关于某个主题的信息。与传统的搜索引擎相比,它们提供了一个连贯的叙述,这可能有助于用户搜索的探索阶段。生成式AI响应更具可读性,连贯性和上下文适当性;因此,它们听起来权威和明确。然而,现有的生成式人工智能模型存在诸如幻觉、不支持的误导性答案、彻底的错误信息和隐藏的偏见等问题。另一个问题是,大多数用户查询是模糊的。当前的系统,包括那些采用生成式人工智能模型的系统,没有通过为用户提供查询的替代答案来适当地考虑模糊性。该项目的愿景是使用户能够使用生成式AI模型来获得可解释的,多样化的,无偏见的一组替代答案,观点,子主题或信息访问中各种问题或任务所需的方面,其中每个不同的答案或观点都忠实地归因于一组证据和支持信息源。该项目旨在使信息访问更容易,更有效,更值得用户信赖。鉴于搜索是最常见的在线活动之一,本项目的定位是对社会产生重大影响,促进对主题的更全面理解,鼓励批判性思维,并促进明智的决策。为了实现上述目标,本项目提出开发新的检索模型,以提高其结果的相关性,多样性和可解释性。该项目将开发搜索结果多粒度多样化的模型,以显着提高检索模型的通用性,为开放域查询提供多样化的结果。此外,该项目通过解释搜索结果的相关性和多样性,使人工智能系统能够充分利用搜索结果。在可解释的搜索结果的基础上,该项目引入了基于解释的搜索结果优化。这涉及到基于对检索模型失败的推理来改进搜索结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Razieh Rahimi其他文献

Axiomatic Analysis of Cross-Language Information Retrieval
跨语言信息检索的公理分析
Conditional Natural Language Inference
条件自然语言推理
  • DOI:
    10.18653/v1/2023.findings-emnlp.456
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youngwoo Kim;Razieh Rahimi;James Allan
  • 通讯作者:
    James Allan
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
PaRaDe:使用大型语言模型的演示进行段落排名
  • DOI:
    10.48550/arxiv.2310.14408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Drozdov;Honglei Zhuang;Zhuyun Dai;Zhen Qin;Razieh Rahimi;Xuanhui Wang;Dana Alon;Mohit Iyyer;Andrew McCallum;Donald Metzler;Kai Hui
  • 通讯作者:
    Kai Hui
Building a multi-domain comparable corpus using a learning to rank method†
使用学习排序方法构建多领域可比语料库†
  • DOI:
    10.1017/s1351324916000164
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Razieh Rahimi;A. Shakery;J. Dadashkarimi;Mozhdeh Ariannezhad;Mostafa Dehghani;Hossein Nasr Esfahani
  • 通讯作者:
    Hossein Nasr Esfahani

Razieh Rahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

A Basic Study for Teaching Face-to-Face Explanation Based on the Audience Awareness Scale
基于受众认知量表的面对面讲解教学基础研究
  • 批准号:
    23K02662
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatial Explanation and Planning for Resilience of Community-Based Small Businesses to Environmental Shocks
基于社区的小型企业对环境冲击的抵御能力的空间解释和规划
  • 批准号:
    2316450
  • 财政年份:
    2023
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
  • 批准号:
    2111216
  • 财政年份:
    2021
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
ExplainIt: Improving Student Learning with Explanation-based Classroom Response Systems
ExplainIt:通过基于解释的课堂响应系统改善学生的学习
  • 批准号:
    2111473
  • 财政年份:
    2021
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Entropy-based Hierarchical Visualization to Support Cross-Scale Explanation of Structural Change
基于熵的分层可视化支持结构变化的跨尺度解释
  • 批准号:
    20K20482
  • 财政年份:
    2020
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
An Explanation-based Reinforcement Learning Approach
基于解释的强化学习方法
  • 批准号:
    2169184
  • 财政年份:
    2019
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Studentship
OPUS: A general, resource-based explanation for density dependence in populations of mammalian herbivores
OPUS:对哺乳动物食草动物种群密度依赖性的一般性、基于资源的解释
  • 批准号:
    1753860
  • 财政年份:
    2018
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Evaluating Processability Theory as an explanation for creole features: a corpus-based case study of Cameroon Pidgin English
评估可加工性理论作为克里奥尔语特征的解释:基于喀麦隆洋泾浜英语的语料库案例研究
  • 批准号:
    1930186
  • 财政年份:
    2017
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Studentship
Proposal of new explanation of frost damage mechanism based on fracture mechanics and energetics
基于断裂力学和能量学的冻害机理新解释的提出
  • 批准号:
    17K06641
  • 财政年份:
    2017
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical explanation of the coronal heating and solar wind acceleration based on wave modeling
基于波浪模型的日冕加热和太阳风加速的理论解释
  • 批准号:
    17J07108
  • 财政年份:
    2017
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了