CAREER: Understanding and engineering DNA supercoiling-mediated feedback in gene circuits

职业:理解和改造基因回路中 DNA 超螺旋介导的反馈

基本信息

  • 批准号:
    2339986
  • 负责人:
  • 金额:
    $ 131.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2029-01-31
  • 项目状态:
    未结题

项目摘要

Synthetic gene circuits can be used to reprogram cells for a variety of applications in medicine and biotechnology. The goal of this project is to determine how changes in DNA structure impact expression of synthetic gene circuits and gene expression in general. The results of this project will have a broad impact on the design of gene circuits for applications such as gene and cell therapies. Integrated into this research, there is a plan for diverse educational initiatives that will engage, inspire, and train the next generation of mammalian synthetic biologists. While significant efforts have been devoted to the logical design of synthetic circuitry, far less is understood regarding the impact of the emergent three-dimensional structure of genetic elements on circuit behavior. Synthetic gene circuits may serve as model microgenomic systems to explore the biophysical basis of gene regulation. As simplified models of gene networks, synthetic circuits provide a tool for examining the causal relationship between structure, function, and biophysical feedback in transcriptional networks. Synthetic biology aims to integrate synthetic genetic control systems within native control networks to direct cell behaviors. However, limited ability to prescribe transgene expression and to actuate changes in native gene expression constrains genetic programming of mammalian cells. In particular, the stochastic nature of transcription makes coordinating expression across multiple genetic elements challenging. Transcription induces a wave of DNA supercoiling, altering the binding affinity of RNA polymerases and reshaping the biochemical landscape of gene regulation. As supercoiling rapidly diffuses, transcription dynamically reshapes the regulation of proximal genes, forming a complex feedback loop. By harnessing biophysical regulation, the researchers have identified a mechanism for biasing the stochastic nature of transcription and changing the population behavior. This CAREER will use synthetic gene circuits to examine the generality of DNA supercoiling-mediated feedback to couple and tune transcription. By varying promoter identity, gene length, inter-gene spacing and syntax, this project will explore how each of these features impact expression profiles. Profiles of expression will be measured by RNA and protein levels in single cells using a combination of microscopy and flow cytometry-based techniques. To connect gene activity and syntax directly to structure, this project will map DNA structure at high resolution using a combination of genomic tools that will build a causal connection between syntax, transcriptional activity, and local genome structure. Understanding the design principles of supercoiling-mediated feedback will allow the researchers to define an essential and overlooked mechanism by which cells orchestrate complex tasks. With this understanding, the research will reshape our perspective on gene regulation and provide novel tools for illuminating mechanically fragile points within the genome that may be exploited by disease. This work will revolutionize our understanding of genome regulation while establishing an entirely new and orthogonal mode of gene expression control that can be harnessed to engineer novel functions, tailor existing circuits, and enable robust cell engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
合成基因电路可用于重新编程细胞,用于医学和生物技术的各种应用。该项目的目标是确定DNA结构的变化如何影响合成基因回路的表达和一般基因表达。该项目的结果将对基因和细胞治疗等应用的基因电路设计产生广泛影响。 结合这项研究,有一项多元化教育举措计划,将吸引、激励和培训下一代哺乳动物合成生物学家。虽然大量的努力已经投入到合成电路的逻辑设计,远没有了解有关的影响,新兴的三维结构的遗传元件对电路的行为。合成基因电路可以作为微基因组系统的模型,以探索基因调控的生物物理基础。作为基因网络的简化模型,合成回路为研究转录网络中结构、功能和生物物理反馈之间的因果关系提供了工具。合成生物学旨在将合成遗传控制系统整合到天然控制网络中,以指导细胞行为。然而,有限的能力,规定转基因表达和启动天然基因表达的变化限制了哺乳动物细胞的遗传编程。特别是,转录的随机性使得跨多个遗传元件的协调表达具有挑战性。转录诱导DNA超螺旋波,改变RNA聚合酶的结合亲和力,重塑基因调控的生化景观。随着超螺旋的迅速扩散,转录动态地重塑了近端基因的调控,形成了一个复杂的反馈回路。通过利用生物物理调节,研究人员已经确定了一种机制,用于偏置转录的随机性和改变种群行为。这个职业将使用合成基因电路来研究DNA超螺旋介导的反馈耦合和调谐转录的一般性。通过改变启动子特性、基因长度、基因间间隔和语法,该项目将探索这些特征中的每一个如何影响表达谱。将使用显微镜和流式细胞术技术的组合,通过单细胞中的RNA和蛋白质水平测量表达谱。为了将基因活性和语法直接与结构联系起来,该项目将使用基因组工具的组合以高分辨率绘制DNA结构,这些工具将在语法,转录活性和局部基因组结构之间建立因果关系。理解超级线圈介导的反馈的设计原理将使研究人员能够定义一种基本的和被忽视的机制,细胞通过这种机制协调复杂的任务。有了这种理解,这项研究将重塑我们对基因调控的看法,并提供新的工具来阐明基因组中可能被疾病利用的机械脆弱点。这项工作将彻底改变我们对基因组调控的理解,同时建立一种全新的正交基因表达控制模式,可用于设计新功能,定制现有电路,并实现强大的细胞工程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响评审标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kate Galloway其他文献

The Role of Pateman’s Sexual Contract in Beneficial Interests in Property
  • DOI:
    10.1007/s10691-019-09413-2
  • 发表时间:
    2019-10-26
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Kate Galloway
  • 通讯作者:
    Kate Galloway
The dual orexin receptor antagonist suvorexant in alcohol use disorder and comorbid insomnia: A case report
双重食欲素受体拮抗剂 suvorexant 治疗酒精使用障碍和共病失眠:病例报告
  • DOI:
    10.1002/ccr3.8740
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Erin J. Campbell;Yvonne Bonomo;L. Collins;A. Norman;Helen O'Neill;Amanda Streitberg;Kate Galloway;Andrew Kyoong;Andrew Perkins;A. Pastor;Andrew J Lawrence
  • 通讯作者:
    Andrew J Lawrence
Curating the aural cultures of the Battery: Soundwalking, auditory tourism and interactive locative media sound art
策划炮台的听觉文化:声音行走、听觉旅游和互动定位媒体声音艺术
  • DOI:
    10.1177/1468797617723764
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kate Galloway
  • 通讯作者:
    Kate Galloway

Kate Galloway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Spatial Heterogeneity in Biofilms Using Colloidal Engineering
职业:利用胶体工程了解生物膜的空间异质性
  • 批准号:
    2328766
  • 财政年份:
    2023
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Strategic Dynamics in the Engineering of Decentralized Systems
职业:了解去中心化系统工程中的战略动态
  • 批准号:
    2422337
  • 财政年份:
    2023
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Standard Grant
Research Initiation: Understanding engineering career fairs as informal professionalization learning spaces
研究启动:将工程招聘会理解为非正式的专业化学习空间
  • 批准号:
    2205023
  • 财政年份:
    2022
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Standard Grant
CAREER: Advancing academic cultures of well-being by understanding professional experiences of engineering faculty
职业:通过了解工程教师的专业经验来推进学术文化的福祉
  • 批准号:
    2045392
  • 财政年份:
    2021
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Continuing Grant
CAREER: Understanding the biological functions of the gasotransmitter hydrogen sulfide using a polymer engineering approach
职业:利用聚合物工程方法了解气体递质硫化氢的生物功能
  • 批准号:
    2102848
  • 财政年份:
    2020
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Strategic Dynamics in the Engineering of Decentralized Systems
职业:了解去中心化系统工程中的战略动态
  • 批准号:
    1943433
  • 财政年份:
    2020
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Standard Grant
CAREER: Understanding the biological functions of the gasotransmitter hydrogen sulfide using a polymer engineering approach
职业:利用聚合物工程方法了解气体递质硫化氢的生物功能
  • 批准号:
    1944390
  • 财政年份:
    2020
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Nanoparticle Adhesion to Guide the Surface Engineering of Supporting Structures
职业:了解纳米粒子粘附以指导支撑结构的表面工程
  • 批准号:
    1844739
  • 财政年份:
    2019
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Standard Grant
CAREER: Understanding Spatial Heterogeneity in Biofilms Using Colloidal Engineering
职业:利用胶体工程了解生物膜的空间异质性
  • 批准号:
    1753352
  • 财政年份:
    2018
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Continuing Grant
Understanding How Integrated Computational Thinking, Engineering Design, and Mathematics Can Help Students Solve Scientific and Technical Problems in Career Technical Education
了解综合计算思维、工程设计和数学如何帮助学生解决职业技术教育中的科学和技术问题
  • 批准号:
    1741784
  • 财政年份:
    2017
  • 资助金额:
    $ 131.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了