CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
基本信息
- 批准号:2340268
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The demand for high speed, reliable, and high data rate transmission are continuously increasing, and emerging upscaled spectrum and efficient spectrum utilization are key methodologies to support those urgent needs. However, the new spectrum with wide instantaneous bands brings unprecedented challenges for filters design, high performance analog to digital converters design, and digital signal processors design in conventional hardware systems. Therefore, this project aims to investigate reconfigurable real-time radio frequency (RF) analog co-processor in low-cost compact form factor to reduce the processing load in digital domain, which can accelerate computation speed, save the energy consumption, and reduce the overall system cost. The RF analog co-processor will lead to new solutions for developing future communication and computing hardware platforms, and the research outcome can be directly applied to radar, 5G/6G/NextG wireless communications, autonomous driving, internet of things (IoT), quantum computing, AI, machine learning, wireless sensing, smart city, smart health, and smart living. In addition, leveraging advanced 3D printing and phase-changing nanoparticle-controlled composite ink development for compact printable RF co-processor design will pave the way towards novel low-cost fast-paced design methodology in RF/microwave components, circuit, and wireless system with new features and high degrees of flexibility, tunability and adaptability. The education and outreach effort in this project will broaden the participation of underrepresented minority students in HBCU in the engineering fields, both locally and across the nation. Furthermore, the model of research and education plan in this project will be excellent resource to help other HBCUs generate impacts in K-12, undergraduate, and graduate education, expanding the pool of diverse and multi-disciplinary talent for STEM workforce development in the U.S.The overarching goal of this CAREER project is to investigate reconfigurable real-time RF analog co-processor circuits in low-cost compact form factor by developing novel composite film with configurable dielectric characteristic and incorporating 3D printing technique. To be specific: 1) An RF analog co-processor will be developed to perform configurable mathematical operations directly at its electromagnetic waveform domain to relax high computational load in digital signal processing. 2) A film with configurable dielectric property will be developed by manipulating the shape, size, and filling factor of phase-changing nanoparticles in carrier matrix material to achieve frequency-tunable RF analog co-processor. 3) With the printable phase-changing composite ink, a simultaneous metal-dielectric 3D printing technique will be leveraged to fabricate the frequency-configurable RF analog co-processor in 3D compact form factor with low cost. The RF real-time configurable analog signal co-processor features the following advantages to cater the needs of high-date-rate transmission and high-speed computation with low energy consumption: a) It processes the signals directly at RF frequency in analog domain before converting them to digital domain, which accelerates the computing speed. b) It relaxes the processing demand of spectrum sensing, signal transformation, mathematical operation, signal modulation, frequency conversion, and analog/digital conversion, which reduces power consumption in digital signal processing. c) The novel printable composite material and the advanced 3D printing technique enable designs with light weight, compact size, and low cost, which facilitates the integration of these designs in complex systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对高速,可靠和高数据速率传输的需求不断增加,并且新兴的高程频谱和有效的频谱利用是支持这些紧急需求的关键方法。但是,具有广泛瞬时频带的新频谱为过滤器设计,数字转换器设计的高性能模拟以及传统硬件系统中的数字信号处理器设计带来了前所未有的挑战。因此,该项目旨在调查低成本紧凑型外形尺寸的可重构实时射频(RF)模拟处理器,以减少数字域中的处理负载,这可以加速计算速度,节省能源消耗并降低整体系统成本。 RF模拟处理器将为开发未来的通信和计算硬件平台提供新的解决方案,并且可以将研究结果直接应用于雷达,5G/6G/NEXTG无线通信,自动驾驶,物联网,物联网(IoT),量子计算,AI,AI,AI,AI,机器学习,机器学习,无线传感,聪明的城市,智能的健康,智能健康和智能生活和智慧生活和智慧生活。此外,利用先进的3D打印和变化的纳米颗粒控制的复合墨水开发,用于紧凑的可打印RF辅助处理器设计,将为RF/Microwave组件,电路和无线系统的新型低成本快速设计方法铺平道路,具有新功能,具有新功能以及灵活性,可调性,可调性,可调性,可调性,可调性。该项目的教育和推广工作将扩大人为少数族裔学生在HBCU的参与,包括本地和全国各地的工程领域。此外,该项目中的研究和教育计划模型将是帮助其他HBCU在K-12,本科和研究生教育中产生影响,扩大了多元化和多学科劳动力的多样性和多学科劳动力的库存库,以在美国的总体上逐步制定综合综合循环综合循环循环综合循环循环,以调查综合综合循环循环循环综合循环循环。介电特性并结合3D打印技术。要具体:1)将开发RF模拟的协调员,以直接在其电磁波形域直接执行可配置的数学操作,以放大数字信号处理中的高计算负载。 2)通过操纵载体基质材料中相相变的纳米颗粒的形状,大小和填充系数来开发具有可配置介电特性的膜以实现频率可调的RF Analog合作处理师。 3)使用可打印的相位复合墨水,将利用一种同时的金属二级3D打印技术来制造频率可配置的RF Analog Coopersesor,以低成本的3D紧凑型形式为止。 RF实时可配置的模拟信号协调器具有以下优点,可满足高速度传输和低能消耗的高速计算的需求:a)它在将它们转换为数字域之前直接在模拟域中以RF频率处理信号,从而加速了计算速度。 b)它放宽了频谱感应,信号转换,数学操作,信号调制,频率转换和模拟/数字转换的处理需求,从而降低了数字信号处理中的功耗。 c)新颖的可打印复合材料和先进的3D打印技术使设计具有轻巧,紧凑的尺寸和低成本的设计,从而有助于这些设计在复杂系统中的整合。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bayaner Arigong其他文献
Bayaner Arigong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bayaner Arigong', 18)}}的其他基金
EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
- 批准号:
2332167 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Track 1 EFRI DCL: Planning Grant: Brain Inspired Intelligence Distributing High Efficiency RF/Analog Signal Processing Circuit
Track 1 EFRI DCL:规划拨款:大脑启发智能分配高效射频/模拟信号处理电路
- 批准号:
2217637 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
HBCU-UP DCL OPEN: Acquisition of Compact Wideband Integrated Near Field Passive Measurement and OTA Measurement System
HBCU-UP DCL OPEN:收购紧凑型宽带集成近场无源测量和 OTA 测量系统
- 批准号:
2230248 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2124525 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Continuous-tuning matrix-beamforming MIMO enabled multi-mode injection-locking passive Wi-Fi sensing
合作研究:SWIFT:SMALL:支持连续调谐矩阵波束成形 MIMO 的多模式注入锁定无源 Wi-Fi 传感
- 批准号:
2124531 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Continuous-tuning matrix-beamforming MIMO enabled multi-mode injection-locking passive Wi-Fi sensing
合作研究:SWIFT:SMALL:支持连续调谐矩阵波束成形 MIMO 的多模式注入锁定无源 Wi-Fi 传感
- 批准号:
2030244 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
- 批准号:
2007796 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
基于频率选择表面的电磁波角度选择性研究
- 批准号:62361008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
- 批准号:52377074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
背根神经节特异性传导针刺频率信号的神经环路研究
- 批准号:82305050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非平稳条件下多变量洪水频率分析方法研究-以淮河流域为例
- 批准号:42301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理引导的机器学习求解频率域声波正反问题研究
- 批准号:42374141
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
MRI: Development of a frequency agile multistatic radio system for geospace imaging
MRI:开发用于地球空间成像的频率捷变多基地无线电系统
- 批准号:
2215567 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Photonic frequency converter for spectrally agile seamless access network in millimeter-wave band
用于毫米波频段频谱敏捷无缝接入网络的光子频率转换器
- 批准号:
22K04116 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009554 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009889 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: An Agile Electro-Optic Frequency Comb for Precision Near-Infrared Radial Velocity Spectroscopy with the Habitable Zone Planet Finder
合作研究:用于精确近红外径向速度光谱的敏捷电光频率梳与宜居带行星探测器
- 批准号:
2009982 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant