CAREER: Dynamic Locomotion with Plasticity for Remote Sensing in Crawlspaces

职业:具有可塑性的动态运动,用于狭小空间的遥感

基本信息

  • 批准号:
    2340278
  • 负责人:
  • 金额:
    $ 68.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2029-02-28
  • 项目状态:
    未结题

项目摘要

Crawlspaces are everywhere: caves, karst landscapes, shafts, ducts, ballast tanks, pipes, and grain elevators. Data from these environments holds immense scientific (biodiversity and geological processes), societal (archaeological and cultural remains), environmental (natural resources and mineral deposits), and health-security-economical (asset management and monitoring) significance. However, human operation in crawlspaces is costly, slow, and risky. Existing snake and insect robots can crawl in pipes and operate within centimeter-scale spaces; however, they are too slow or not completely autonomous. There is a pressing need for fast, agile, and efficient autonomous systems specifically designed for crawlspaces. Legged locomotion and multi-rotor flight show promise in addressing this challenge, having already revolutionized numerous remote sensing tasks by surpassing the capabilities of any other robot category. However, their operation remains limited to spacious tunnels. This Faculty Early Career Development (CAREER) project supports research that seeks to harness the exceptional agility, efficiency, and speed of legged and rotary-wing robots and adapt it specifically for use in crawlspaces. The project designs a multi-modal robot with extensive locomotion plasticity capable of efficiently traversing extremely tight crawlspaces with agility through bipedal walking and flying. Furthermore, this project aims to promote gender equity in Northeastern University’s robotics program, a significant area of growth identified by school leadership.Achieving efficient, agile, and fast legged-aerial locomotion in crawlspaces represents a new advancement in robot locomotion. Three knowledge gaps still exist in bridging legged locomotion and multi-rotor flight in crawlspaces: (1) Actuation challenges hinder the scalability of motion control performance, necessary for fast and precise foot placement, when transitioning from legged robots designed for open spaces to smaller robots operating in crawlspaces; (2) Instability issues arising from multi-rotors’ air jets near surfaces pose flight immobilization risks; (3) Crawlspaces need several modes of locomotion and there is no systematic robot design framework to accommodate the requirements dictated by these modes. This project will engage in fundamental research to address these gaps, designing a bioinspired locomotion robot capable of walking, hovering, jumping, and running over inclined surfaces to push the operational envelope of mobile robots, making autonomous operations inside extremely tight crawlspaces possible. The project’s efforts revolve around robot and control design. This project’s key areas of innovation include (1) Introducing actuation design paradigms for small robots based on computational structure design for achieving comparable motion control performance seen in large robots; (2) Research and validation of new locomotion feats and underlying models and nonlinear controllers based on the integration of posture manipulation and thrust vectoring to overcome air jet risks in aerial robotics; (3) Co-designing robots and controls through generative design methods to accommodate conflicting requirements imposed by many locomotion modes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
爬行空间无处不在:洞穴、喀斯特地貌、竖井、管道、压载坦克、管道和谷物升降机。来自这些环境的数据具有巨大的科学意义(生物多样性和地质过程)、社会意义(考古和文化遗迹)、环境意义(自然资源和矿藏)以及健康-安全-经济意义(资产管理和监测)。然而,在爬虫空间中进行人工操作是昂贵、缓慢和危险的。现有的蛇和昆虫机器人可以在管道中爬行,并在厘米级的空间内操作;然而,它们太慢或不完全自主。迫切需要专门为爬行空间设计的快速、灵活和高效的自主系统。腿部移动和多旋翼飞行在应对这一挑战方面表现出了希望,它们已经超越了任何其他机器人类别的能力,从而彻底改变了许多遥感任务。然而,它们的运营仍然局限于宽敞的隧道。该学院早期职业发展(CALEAR)项目支持寻求利用腿部和旋转翼机器人的非凡敏捷性、效率和速度,并专门将其改造为用于爬行空间的研究。该项目设计了一种具有广泛运动可塑性的多通道机器人,能够通过两足行走和飞行高效、灵活地穿越极其狭窄的爬行空间。此外,该项目旨在促进东北大学机器人项目的性别平等,这是学校领导确定的一个重要增长领域。在爬行空间实现高效、灵活和快速的腿部空中移动代表着机器人移动的新进步。履带式空间的桥式腿式移动和多旋翼飞行仍然存在三个知识空白:(1)当从为开放空间设计的腿式机器人过渡到在爬行式空间中操作的较小机器人时,执行挑战阻碍了运动控制性能的可扩展性,这是快速精确放置脚部所必需的;(2)多转子在接近地面的喷气引起的不稳定性问题构成了飞行固定风险;(3)爬行式空间需要几种运动模式,并且没有系统的机器人设计框架来适应这些模式所要求的要求。该项目将致力于基础研究,以弥补这些差距,设计一种受生物启发的移动机器人,能够在倾斜的表面上行走、悬停、跳跃和奔跑,以突破移动机器人的操作界限,使在极其狭窄的爬行空间内自主操作成为可能。该项目的努力围绕着机器人和控制设计。该项目的主要创新领域包括(1)引入基于计算结构设计的小型机器人的驱动设计范例,以实现与大型机器人类似的运动控制性能;(2)研究和验证基于姿势操纵和推力矢量的集成的新的运动壮举和基础模型以及非线性控制器,以克服空中机器人中的空气喷射风险;(3)通过产生式设计方法共同设计机器人和控制器,以适应多种运动模式施加的相互冲突的要求。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alireza Ramezani其他文献

Prevalence and Risk Factors of Diabetic Retinopathy in Yazd Province
亚兹德省糖尿病视网膜病变的患病率和危险因素
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Dehghan;M. Katibeh;H. Ahmadieh;Alireza Ramezani;S. Moradian;R. Noorinia;H. Ziaei;A. Mahdavi;M. Yaseri;Jalil Naghib;A. Toosi;M. Azarmina;K. Roohi;M. Javadi
  • 通讯作者:
    M. Javadi
INITIAL MACULAR THICKNESS AND RESPONSE TO TREATMENT IN DIABETIC MACULAR EDEMA
糖尿病黄斑水肿的初始黄斑厚度和治疗反应
  • DOI:
    10.1097/iae.0b013e31820bde7d
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Soheilian;Alireza Ramezani;M. Yaseri;S. A. Mirdehghan;A. Obudi;Bijan Bijanzadeh
  • 通讯作者:
    Bijan Bijanzadeh
Unilateral Decreased Vision in a Middle-Aged Man
中年男性单侧视力下降
Precipitate inside the epithelial iris cyst: a report of two cases
Banking Turn of High-DOF Dynamic Morphing Wing Flight by Shifting Structure Response Using Optimization
通过优化移动结构响应实现高自由度动态变形机翼飞行的倾斜转弯
  • DOI:
    10.48550/arxiv.2405.05490
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bibek Gupta;Yogi Shah;Taoran Liu;Eric N. Sihite;Alireza Ramezani
  • 通讯作者:
    Alireza Ramezani

Alireza Ramezani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alireza Ramezani', 18)}}的其他基金

Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2142519
  • 财政年份:
    2022
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

CAREER: Hierarchical Reinforcement Learning Framework for Safe Dynamic Bipedal Locomotion
职业:安全动态双足运动的分层强化学习框架
  • 批准号:
    2144156
  • 财政年份:
    2022
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Continuing Grant
CRCNS Research Project: Collaborative Research: Experimental, Numerical, and Robotic Study of the Role of Dynamic Load Sensing in Legged Locomotion
CRCNS 研究项目:协作研究:动态负载传感在腿式运动中的作用的实验、数值和机器人研究
  • 批准号:
    2113028
  • 财政年份:
    2021
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Continuing Grant
CAREER: Morphological Computation for Resilient Dynamic Locomotion of Compliant Legged Robots with Application to Precision Agriculture
职业:顺应腿式机器人弹性动态运动的形态计算及其在精准农业中的应用
  • 批准号:
    2046270
  • 财政年份:
    2021
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Standard Grant
CAREER: A Hybrid Filtering and Robust Control Framework for Legged Robot Locomotion on Dynamic Rigid Surfaces
职业生涯:用于动态刚性表面上的腿式机器人运动的混合过滤和鲁棒控制框架
  • 批准号:
    2046562
  • 财政年份:
    2021
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Standard Grant
Development of a quadruped robot with bio-inspired mechanisms for highly efficient dynamic locomotion
开发具有仿生机制的四足机器人,实现高效动态运动
  • 批准号:
    20K22389
  • 财政年份:
    2020
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Control and Fractal-based Stability of Dynamic Vision-Based Aperiodic Legged Locomotion
职业:基于动态视觉的非周期腿式运动的控制和基于分形的稳定性
  • 批准号:
    1944722
  • 财政年份:
    2020
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Standard Grant
Dynamic Hybrid Whole-Body Locomotion for Wheeled Legged Robots
轮腿机器人的动态混合全身运动
  • 批准号:
    2441459
  • 财政年份:
    2020
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Studentship
Autonomous Motor Skills for Versatile Dynamic Legged Locomotion in Realistic Scenarios
在现实场景中实现多功能动态腿部运动的自主运动技能
  • 批准号:
    2279904
  • 财政年份:
    2019
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Studentship
S&AS:INT:Learning and Planning for Dynamic Locomotion
S
  • 批准号:
    1849343
  • 财政年份:
    2019
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2019: Rough skin: microstructural and fluid dynamic studies of elasmobranch skin to understand how denticle morphology affects locomotion
2019 财年 NSF 生物学博士后奖学金:粗糙皮肤:软骨鱼类皮肤的微观结构和流体动力学研究,以了解小齿形态如何影响运动
  • 批准号:
    1907211
  • 财政年份:
    2019
  • 资助金额:
    $ 68.12万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了