CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation

职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒

基本信息

  • 批准号:
    2340964
  • 负责人:
  • 金额:
    $ 50.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2029-05-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARYThis project explores creating new nanoparticles for studying the brain. Over the last ten years, scientists have used a technique called optogenetics to understand how brains work. With optogenetics, researchers control specific brain cells using light. The problem is that delivering this light often requires surgery, which can harm the brain's neurons. Instead, the team is developing nanoparticles and using ultrasound waves to achieve the same results without surgery. These nanoparticles, made of special materials called hydrogen-bonded organic frameworks, can emit light or release chemicals when hit by ultrasound waves. By altering the molecules inside them, the color of the emitted light changes after ultrasound exposure. Also, altering the nanoparticle structures allows control over the amounts of released chemicals upon ultrasound impact. The resulting light or chemicals can control certain brain neurons without harming the brain tissues. Beyond the science, the project includes an outreach program named "Biomaterials Research in Engineering." It aims to get Austin Community College students more interested in engineering, especially those who have not considered it before. Through a mix of theory and hands-on activities, the program seeks to spark interest and improve diversity in engineering fields. By overcoming current method challenges, this research not only increases scientific knowledge of hydrogen-bonded organic frameworks nanoparticles but also develops better technologies for understanding and treating brain diseases. The inclusion of the outreach program reflects a commitment to diversity and inclusion in engineering fields, crucial for the long-term health and innovation of the scientific community.TECHNICAL SUMMARYThis research project aims to advance the fields of optogenetics and chemogenetics through the innovative development of hydrogen-bonded organic frameworks (HOFs) nanoparticles for ultrasound-triggered neuromodulation. Existing challenges in optogenetics, notably the necessity for invasive optical fiber implantation, emphasize the need for exploring sono-optogenetics, a paradigm where nanoparticles are activated by focused ultrasound (FUS). The envisioned HOFs nanoparticles, intricately assembled through multi-hydrogen bonds and π-π stacking are desirable for achieving non-invasive optogenetic and chemogenetic control over neural activity. An important goal is to design a versatile emission platform of luminophores activated by ultrasound, for control of multi-colored opsins in optogenetics. Furthermore, the research outlines the customization of HOFs nanoparticles for precise and controlled ultrasound-triggered drug release in chemogenetics. The key focus lies in manipulating cohesive energy by modulating the number of hydrogen bonds and π-π interactions within the HOFs structure, presenting an innovative approach to achieving programmable drug delivery. The proposed technical approach not only expands our understanding of HOFs as biomaterials but also holds the potential to significantly impact neuroscience research and therapeutic interventions for neurological diseases. Beyond its technical scope, this project incorporates a significant broader impact through the initiation of the "biomaterials research in engineering" (BRING) outreach program. This program is designed to engage underrepresented engineering students at Austin Community College (ACC) in theoretical and practical modules related to biomaterials research. This research has a profound impact on advancing our fundamental understanding of HOFs as biomaterials, thereby influencing the development of technologies for neuroscience research and therapeutic applications in neurological diseases. The involvement of science, technology, engineering and mathematics (STEM) students, particularly those underrepresented at ACC, aligns with a broader commitment to promoting diversity and inclusion in the scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个项目探索创造新的纳米粒子用于研究大脑。在过去的十年里,科学家们使用一种称为光遗传学的技术来了解大脑是如何工作的。通过光遗传学,研究人员利用光控制特定的脑细胞。问题是,传递这种光通常需要手术,这可能会伤害大脑的神经元。相反,该团队正在开发纳米颗粒并使用超声波来实现相同的结果,而无需手术。这些纳米粒子由称为氢键有机框架的特殊材料制成,当被超声波击中时可以发光或释放化学物质。通过改变它们内部的分子,发射光的颜色在超声暴露后发生变化。此外,改变纳米颗粒结构允许控制超声冲击时释放的化学物质的量。由此产生的光或化学物质可以控制某些大脑神经元,而不会伤害大脑组织。除了科学,该项目还包括一个名为“工程生物材料研究”的推广计划。“它的目的是让奥斯汀社区学院的学生对工程更感兴趣,特别是那些以前没有考虑过的学生。通过理论和实践活动的组合,该计划旨在激发兴趣,提高工程领域的多样性。通过克服当前的方法挑战,这项研究不仅增加了氢键有机框架纳米颗粒的科学知识,而且还开发了更好的技术来理解和治疗脑部疾病。该项目的加入反映了对工程领域多样性和包容性的承诺,这对科学界的长期健康和创新至关重要。技术概述该研究项目旨在通过创新开发用于超声触发神经调节的氢键有机框架(HOFs)纳米颗粒,推进光遗传学和化学遗传学领域。光遗传学的现有挑战,特别是侵入性光纤植入的必要性,强调了探索声光遗传学的必要性,声光遗传学是一种通过聚焦超声(FUS)激活纳米颗粒的范例。通过多氢键和π-π堆叠复杂组装的所设想的HOF纳米颗粒对于实现对神经活性的非侵入性光遗传学和化学遗传学控制是期望的。一个重要的目标是设计一个多功能的发射平台,由超声激活的发光体,用于控制光遗传学中的多色视蛋白。此外,该研究概述了HOFs纳米颗粒的定制,用于化学遗传学中精确和受控的超声触发药物释放。重点在于通过调节HOFs结构内的氢键和π-π相互作用的数量来操纵内聚能,提出了一种实现可编程药物递送的创新方法。所提出的技术方法不仅扩展了我们对HOFs作为生物材料的理解,而且有可能对神经科学研究和神经疾病的治疗干预产生重大影响。除了其技术范围外,该项目还通过启动“工程生物材料研究”(BRING)外展计划产生了更广泛的影响。该计划旨在让奥斯汀社区学院(ACC)代表性不足的工程专业学生参与与生物材料研究相关的理论和实践模块。这项研究对推进我们对HOFs作为生物材料的基本理解产生了深远的影响,从而影响了神经科学研究和神经疾病治疗应用技术的发展。科学,技术,工程和数学(STEM)学生的参与,特别是那些在ACC代表性不足的学生,与促进科学界多样性和包容性的更广泛承诺保持一致。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huiliang Wang其他文献

Study of spatial distribution characteristics of river eco-environmental values based on emergy-GeoDa method
基于emergy-GeoDa方法的河流生态环境价值空间分布特征研究
  • DOI:
    10.1016/j.scitotenv.2021.149679
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zening Wu;Fengyi Zhang;Danyang Di;Huiliang Wang
  • 通讯作者:
    Huiliang Wang
Protocol to fabricate a self-adhesive and long-term stable hydrogel for sleep EEG recording
用于睡眠脑电图记录的自粘且长期稳定的水凝胶的制备方案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ju;Mengmeng Yao;Benjamin Baird;Huiliang Wang
  • 通讯作者:
    Huiliang Wang
Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release
用于按需细胞封装和释放的可逆光响应蛋白水凝胶
  • DOI:
    10.1016/j.actbio.2025.01.012
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Om Prakash Narayan;Jiawei Dong;Miao Huang;Liqiang Chen;Lu Liu;Vivian Nguyen;Abdul Vehab Dozic;Xiangping Liu;Huiliang Wang;Qian Yin;Xin Tang;Juan Guan
  • 通讯作者:
    Juan Guan
A hydrological drought risk assessment method based on a four-dimensional Copula function model integrating development and recovery speed characteristics
一种基于融合发展和恢复速度特征的四维 Copula 函数模型的水文干旱风险评估方法
  • DOI:
    10.1016/j.ecolind.2025.113751
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Xiangyang Zhang;Zening Wu;Huiliang Wang;Zhilei Yu;Yifan Chen
  • 通讯作者:
    Yifan Chen
Luminescent hydrogels based on di(4-propoxyphenyl)-dibenzofulvene exhibiting four emission colours and organic solvents/thermal dual-responsive properties
基于二(4-丙氧基苯基)-二苯并富烯的发光水凝胶具有四种发射颜色和有机溶剂/热双响应特性
  • DOI:
    10.1039/c4tc00741g
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Qisi Liu;Peifeng Qin;Chen Zeng;Huiliang Wang
  • 通讯作者:
    Huiliang Wang

Huiliang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huiliang Wang', 18)}}的其他基金

I-Corps: Translation Potential of a Wearable, Brain-computer Interface System for In-home Stroke Rehabilitation
I-Corps:可穿戴脑机接口系统在家庭中风康复中的转化潜力
  • 批准号:
    2420836
  • 财政年份:
    2024
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Designing Elastic Hydrogen-bonded Crosslinked Porous Organic Materials
职业:设计弹性氢键交联多孔有机材料
  • 批准号:
    2413574
  • 财政年份:
    2024
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Continuing Grant
Combining quantum multicomponent molecular theory and data science to understand the mechanism of physical properties in low-barrier hydrogen-bonded systems
结合量子多组分分子理论和数据科学来理解低势垒氢键系统的物理性质机制
  • 批准号:
    23K17905
  • 财政年份:
    2023
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
GOALI: Designing Adaptive Hydrogen-bonded Frameworks for Molecular Structure Determination
目标:设计用于分子结构测定的自适应氢键框架
  • 批准号:
    2002964
  • 财政年份:
    2020
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Standard Grant
Electron transfer in hydrogen bonded metal-organic materials.
氢键金属有机材料中的电子转移。
  • 批准号:
    2447951
  • 财政年份:
    2020
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Studentship
non-equllibrium dynamics of hydrogen-bonded molecular assembly
氢键分子组装的非平衡动力学
  • 批准号:
    20K05476
  • 财政年份:
    2020
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional Hydrogen-Bonded Self-Sorting Networks
功能性氢键自排序网络
  • 批准号:
    EP/T011726/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Research Grant
Photodynamic effect of hydrogen bonded supramolecular polymer having photoswitch
具有光开关的氢键超分子聚合物的光动力效应
  • 批准号:
    20K05247
  • 财政年份:
    2020
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detecting feeble signal utilizing stochastic resonance in hydrogen-bonded molecular conductors and its application
利用氢键分子导体中的随机共振检测微弱信号及其应用
  • 批准号:
    19K22123
  • 财政年份:
    2019
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structural study of pressure-induced phase of hydrogen-bonded supramolecular ferroelectrics
氢键超分子铁电体压力诱导相的结构研究
  • 批准号:
    19K03728
  • 财政年份:
    2019
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Computational Study of Vibrational Motion in Hydrogen-Bonded Systems
RUI:氢键系统振动运动的计算研究
  • 批准号:
    1855583
  • 财政年份:
    2019
  • 资助金额:
    $ 50.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了