RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
基本信息
- 批准号:2342254
- 负责人:
- 金额:$ 249.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will use a multi-pronged approach to recruit and retain diverse domestic students and better prepare them to pursue research careers in Applied Algebra, making a special effort to recruit women, underrepresented minorities, first generation students, veterans, and tech workers. Ultimately, this project will increase the number of mathematically-trained, diverse U.S. Citizens and permanent residents in all branches of the cybersecurity and quantum workforce, helping to improve U.S. national security, economic competitiveness, and infrastructure resilience. The goals of this project are to: 1) establish diverse, vertically-integrated research teams at the University of South Florida in the field of Applied Algebra, focusing on connections with the applied fields of cryptography, coding theory and quantum computing; 2) nurture the Habits and Mind and professional skills that the next generation of diverse U.S. mathematics researchers will need to succeed in their research careers; 3) recruit and retain diverse domestic students through extensive outreach and a rich, supportive, and productive training environment; 4) help others learn the best practices developed in this project, for example, through a new Florida Hub for Applied Algebra, to be established in collaboration with Florida Atlantic University; and 5) sustain the program beyond the funding period. To achieve these goals, this RTG project will bring together a number of pre-existing activities, including recently developed curricula related to cryptography and quantum sciences, an undergraduate research program, and outreach programs for grade 8-12 girls. In addition, a number of new initiatives will be developed, including: interdisciplinary research teams composed of faculty, postdoctoral researchers, graduate students, and undergraduates; a multi-tiered mentoring program; cross-cohort peer tutoring; professional skills development training; and on-campus internship opportunities.Through this project, the trainees will participate in three vertically integrated interdisciplinary research teams, each focusing on one of the following research areas: 1) Cryptography, which investigates hard computational problems rooted in algebra and number theory that can be used to design the next generation of cryptosystems, including the search for short vectors in Euclidean lattices, isogenies, and the inversion of group actions; 2) Coding Theory, which involves mathematical tools for the correction of errors that occur during the transmission of data, with an emphasis on the repair problem and on code-based cryptography; 3) Quantum Computing, focusing on the design of quantum algorithms to solve problems in Applied Algebra that are intractable to classical computers, as well as the improvement of quantum circuit design by computational algebra techniques, and the use of error correcting codes to bring redundancy to these circuits to protect them from the error induced by the environment. In addition to training the next generation of diverse mathematics researchers in these fields, the project will expand and vertically integrate Applied Algebra initiatives that are being developed at the USF, and it will strengthen collaborative ties within the Florida Applied Algebra community, starting with Florida Atlantic University (FAU), an HSI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将采用多管齐下的方法来招募和留住不同的国内学生,并更好地为他们在应用代数领域从事研究职业做好准备,特别努力招募女性,代表性不足的少数民族,第一代学生,退伍军人和技术工人。最终,该项目将增加在网络安全和量子劳动力的所有分支中接受过专业培训的多样化美国公民和永久居民的数量,帮助改善美国国家安全,经济竞争力和基础设施弹性。该项目的目标是:1)在南佛罗里达大学建立应用代数领域的多样化,垂直整合的研究团队,重点是与密码学,编码理论和量子计算的应用领域的联系; 2)培养下一代美国多样化数学研究人员在其研究生涯中取得成功所需的习惯和思维以及专业技能; 3)通过广泛的推广和丰富,支持和富有成效的培训环境招募和留住不同的国内学生; 4)帮助他人学习本项目中开发的最佳实践,例如,通过与佛罗里达大西洋大学合作建立的新的佛罗里达应用代数中心;以及5)在资助期后维持该计划。为了实现这些目标,这个RTG项目将汇集一些预先存在的活动,包括最近开发的与密码学和量子科学相关的课程,本科研究计划,以及8-12年级女孩的外展计划。此外,将制定一些新的举措,包括:由教师,博士后研究人员,研究生和本科生组成的跨学科研究团队;多层次的指导计划;跨队列同伴辅导;专业技能发展培训;和校内实习机会。通过这个项目,学员将参加三个垂直整合的跨学科研究团队,每个人都专注于以下研究领域之一:1)密码学,它研究了植根于代数和数论的困难计算问题,这些问题可用于设计下一代密码系统,包括在欧几里得格中搜索短向量,同构和群作用的反转; 2)编码理论,涉及用于纠正数据传输过程中出现的错误的数学工具,重点是修复问题和基于代码的密码学; 3)量子计算,专注于设计量子算法来解决应用代数中经典计算机难以解决的问题,以及通过计算代数技术改进量子电路设计,以及使用纠错码来为这些电路带来冗余,以保护它们免受环境引起的错误。除了培训这些领域的下一代多样化数学研究人员外,该项目还将扩大和垂直整合USF正在开发的应用代数计划,并将加强佛罗里达应用代数社区内的合作关系,从佛罗里达大西洋大学(FAU)开始,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Francois Biasse其他文献
Jean-Francois Biasse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Francois Biasse', 18)}}的其他基金
REU Site: Cryptography and Coding Theory at the University of South Florida
REU 网站:南佛罗里达大学密码学和编码理论
- 批准号:
2244488 - 财政年份:2023
- 资助金额:
$ 249.75万 - 项目类别:
Standard Grant
CAREER: Algebraic Methods for the Computation of Approximate Short Vectors in Ideal Lattices
职业:理想格子中近似短向量计算的代数方法
- 批准号:
1846166 - 财政年份:2019
- 资助金额:
$ 249.75万 - 项目类别:
Continuing Grant
EAGER: Quantum-Safe Cryptosystems Based on Isogenies
EAGER:基于同基因的量子安全密码系统
- 批准号:
1839805 - 财政年份:2018
- 资助金额:
$ 249.75万 - 项目类别:
Standard Grant
相似国自然基金
普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
- 批准号:12226506
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Matroids in Applied and Computational Algebra
应用和计算代数中的拟阵
- 批准号:
EP/R023379/1 - 财政年份:2018
- 资助金额:
$ 249.75万 - 项目类别:
Fellowship
Algorithms for computer algebra applied to industrial modelling
应用于工业建模的计算机代数算法
- 批准号:
6868-2011 - 财政年份:2016
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
- 批准号:
1502553 - 财政年份:2015
- 资助金额:
$ 249.75万 - 项目类别:
Continuing Grant
Algorithms for computer algebra applied to industrial modelling
应用于工业建模的计算机代数算法
- 批准号:
6868-2011 - 财政年份:2015
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for computer algebra applied to industrial modelling
应用于工业建模的计算机代数算法
- 批准号:
6868-2011 - 财政年份:2014
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for computer algebra applied to industrial modelling
应用于工业建模的计算机代数算法
- 批准号:
6868-2011 - 财政年份:2012
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for computer algebra applied to industrial modelling
应用于工业建模的计算机代数算法
- 批准号:
6868-2011 - 财政年份:2011
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
Applied algebra and combinatorial Hopf algebra
应用代数和组合Hopf代数
- 批准号:
170251-2003 - 财政年份:2007
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual
Applied algebra and combinatorial Hopf algebra
应用代数和组合Hopf代数
- 批准号:
170251-2003 - 财政年份:2006
- 资助金额:
$ 249.75万 - 项目类别:
Discovery Grants Program - Individual