Applied algebra and combinatorial Hopf algebra

应用代数和组合Hopf代数

基本信息

  • 批准号:
    170251-2003
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2006
  • 资助国家:
    加拿大
  • 起止时间:
    2006-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
无摘要- Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bergeron, Nantel其他文献

Flagged (P,ρ) -partitions
标记 (P,Ï) - 分区
  • DOI:
    10.1016/j.ejc.2020.103085
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Assaf, Sami;Bergeron, Nantel
  • 通讯作者:
    Bergeron, Nantel
THE HOPF ALGEBRAS OF SYMMETRIC FUNCTIONS AND QUASI-SYMMETRIC FUNCTIONS IN NON-COMMUTATIVE VARIABLES ARE FREE AND CO-FREE
Elliptic and q-Analogs of the Fibonomial Numbers

Bergeron, Nantel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bergeron, Nantel', 18)}}的其他基金

Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Hopf Algebra and structure constants
组合 Hopf 代数和结构常数
  • 批准号:
    170251-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Conference: 2023 Combinatorial Algebra meets Algebraic Combinatorics (CAAC)
会议:2023 组合代数遇上代数组合 (CAAC)
  • 批准号:
    2302019
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
New perspectives in combinatorial algebra
组合代数的新视角
  • 批准号:
    2302149
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Problems in combinatorial commutative algebra
组合交换代数问题
  • 批准号:
    RGPIN-2019-05412
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Graduate Meeting on Combinatorial Commutative Algebra
组合交换代数研究生会议
  • 批准号:
    2206872
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial investigations in commutative algebra
交换代数中的组合研究
  • 批准号:
    RGPIN-2014-04392
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    DGECR-2021-00010
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Combinatorial models in algebraic geometry and commutative algebra
代数几何和交换代数中的组合模型
  • 批准号:
    RGPIN-2021-02391
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了