Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
基本信息
- 批准号:2344923
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many natural rock formations are porous, and when the pores are saturated with water, petroleum, and other fluids, composite materials with unique properties result. Geophysicists rely on mechanical (sound) waves to explore the properties of these composite materials. Speed of wave propagation in fluid-saturated rocks depends on the elastic properties (compressibility) of both the rock and the fluid in the pores. Unlike other rocks, shale formations, which have attracted increasing attention in the past decade, have pores with sizes in the nanometer range, each fitting as few as hundreds of fluid molecules. Many physical and chemical properties of such confined fluids are different from those of their bulk counterparts and this project will study how elastic properties of hydrocarbon fluids in nanopores deviate from bulk. The project will help advance fundamental understanding of effects of confinement on fluids and will produce new computational methods for petroleum and water resource exploration and greenhouse gas sequestration. Additional societal impacts will be achieved through STEM workforce development - NJIT has one of the most diverse student populations in the country, providing the opportunity for the team to engage in research students with backgrounds that are underrepresented in STEM. Additionally, the project will contribute to improved STEM education through inclusion of proposal-related topics in the courses taught by the research team members. During summer months, the research team will work with community college and high-school students, including the participants of the ACS SEED program for economically disadvantaged high-school students.The objective of this research program is to develop a molecular theory capable of quantifying the effects of confinement on elastic properties of fluids and use this theory to predict wave propagation in fluid-saturated nanoporous media. Wave propagation in such media is determined from the elastic moduli of both solid and fluid constituents. However, when fluids are confined in nanopores, many of their physio-chemical properties change as compared to bulk, e.g., density, freezing point, diffusivity, etc. Recent ultrasonic experiments showed that the speed of ultrasound propagation in nanoporous glass saturated with liquid argon, nitrogen, n-hexane, and water differs from what is expected for a macroporous media, suggesting that the elastic properties of those fluids in nanopores (bulk modulus or compressibility) also deviate from the bulk values. The research team hypothesizes that confinement will change the elastic properties of all fluids when the pore size is comparable to the molecular size, and the extent of this change is determined by the pore / molecule size ratio and strength of the solid-fluid interactions. To test this hypothesis, the research team will explore the following questions: 1. How does confinement affect the compressibility of fluids with similar chemistry but different molecular sizes? 2. How do atomistic details of the pore surface affect the compressibility of the confined fluid? 3. Can nanoconfinement induce finite shear modulus for the fluid? 4. How does a theory of wave propagation in porous media have to be modified for nanoporous media? Molecular-scale modeling efforts to answer these questions will focus on short alkanes confined in pores of various sizes and surface properties. Experiments will focus on confined alkanes in porous glasses and carbon xerogels with well-defined 1-10 nm pore sizes and different surface chemistries as model porous media. The measurements of ultrasonic wave propagation in these media will provide elastic properties, which can be used to directly verify the molecular modeling predictions. Modeling and experimental results together will help to modify the theory of wave propagation in fluid-saturated porous media to account for the nanoporosity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多天然岩层是多孔的,当孔隙被水、石油和其他流体饱和时,就会产生具有独特性能的复合材料。地球物理学家依靠机械(声波)来探索这些复合材料的特性。波在流体饱和岩石中的传播速度取决于岩石和孔隙中流体的弹性特性(压缩性)。与其他岩石不同,页岩地层在过去十年中引起了越来越多的关注,其孔隙大小在纳米范围内,每个孔隙仅容纳数百个流体分子。这种受限流体的许多物理和化学性质与其本体对应物不同,本项目将研究纳米孔中烃类流体的弹性性质如何偏离本体。该项目将有助于推进对流体封闭效应的基本理解,并将为石油和水资源勘探以及温室气体封存产生新的计算方法。额外的社会影响将通过STEM劳动力发展实现- NJIT拥有全国最多样化的学生群体之一,为团队提供了参与研究的机会,这些学生的背景在STEM中代表性不足。此外,该项目将通过在研究团队成员教授的课程中纳入与提案相关的主题,为改善STEM教育做出贡献。在夏季的几个月里,研究小组将与社区大学和高中学生合作,包括为经济困难的高中学生提供的ACS SEED项目的参与者。该研究项目的目标是开发一种能够量化限制对流体弹性性质影响的分子理论,并使用该理论预测流体饱和纳米多孔介质中的波传播。波在这种介质中的传播由固体和流体成分的弹性模量确定。然而,当流体被限制在纳米孔中时,与本体相比,它们的许多物理化学性质发生变化,例如,最近的超声波实验表明,超声波在纳米多孔玻璃中的传播速度与液态氩,氮,正己烷和水饱和,与大孔介质的预期不同,这表明纳米孔中这些流体的弹性性质(体积模量或压缩性)也偏离体积值。研究小组假设,当孔径与分子大小相当时,限制将改变所有流体的弹性特性,而这种变化的程度取决于孔/分子大小比和固体-流体相互作用的强度。为了验证这一假设,研究小组将探讨以下问题:1。对于化学性质相似但分子大小不同的流体,禁闭是如何影响其可压缩性的?2.孔隙表面的原子细节如何影响受限流体的可压缩性?3.纳米约束能诱导流体的有限剪切模量吗?4.波在多孔介质中的传播理论如何被修改为纳米多孔介质?回答这些问题的分子尺度模拟工作将集中在各种尺寸和表面性质的孔隙中的短链烷烃。实验将集中在多孔玻璃和碳干凝胶中的受限烷烃,这些干凝胶具有明确的1-10 nm孔径和不同的表面化学性质,作为模型多孔介质。超声波在这些介质中传播的测量将提供弹性特性,这些特性可用于直接验证分子模型预测。建模和实验结果将有助于修改流体饱和多孔介质中的波传播理论,以解释纳米孔隙率。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gennady Gor其他文献
Gennady Gor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gennady Gor', 18)}}的其他基金
14th International Conference on Fundamentals of Adsorption, FOA14
第十四届吸附基础国际会议,FOA14
- 批准号:
2136177 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NSF-DFG Confine: Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation
NSF-DFG Confine:纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动
- 批准号:
2234028 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
EAGER: Compressibility of Nanopore-Confined Liquids Probed by Ultrasonic Experiments
EAGER:通过超声波实验探测纳米孔限制液体的可压缩性
- 批准号:
2128679 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Coupling Adsorption and Mechanics: Towards the Development of Smart Porous Materials
职业:吸附与力学的耦合:智能多孔材料的发展
- 批准号:
1944495 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Travel Grant for International Workshop on Characterization of Porous Materials
多孔材料表征国际研讨会旅费补助
- 批准号:
1818797 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Exploring properties of few molecules in tightly-confined plasmonic nanocavities
探索紧密限制的等离子体纳米腔中少数分子的特性
- 批准号:
2127039 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Studentship
Elucidation of interlocking mechanism between motion of confined molecules and physical properties of framework in clathrates
阐明包合物中受限分子运动与骨架物理性质之间的联锁机制
- 批准号:
18H01997 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Self-Organized Colloidal Assemblies in Confined Spaces:Formation Mechanism, Internal Structure and Resulting Optical Properties
密闭空间中的自组织胶体组件:形成机制、内部结构和由此产生的光学性质
- 批准号:
338276051 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Research Grants
Structure and properties of water confined in the nano-surface and space of carbon nanotube
碳纳米管纳米表面和空间限制水的结构和性质
- 批准号:
16H02079 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Physical and mechanical properties of the brittle cementite phase in a confined volume
有限体积内脆性渗碳体相的物理机械性能
- 批准号:
16H04516 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Water in confined geometry of carbon nanotubes: pressure-dependent properties and a wet-dry transition
碳纳米管受限几何形状中的水:压力依赖性特性和干湿转变
- 批准号:
15K17738 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Elucidation of Quantum Behavior and Properties of Confined Molecules in Nanospace of Porous Coordination Polymers
多孔配位聚合物纳米空间中受限分子的量子行为和性质的阐明
- 批准号:
15H03787 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure and properties of water confined in the nano-surface and space of carbon nanotube
碳纳米管纳米表面和空间限制水的结构和性质
- 批准号:
24310094 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Colloidal versus epitaxial quantum confined systems: the influence of a surface on optoelectronic properties of nanomaterials
胶体与外延量子限制系统:表面对纳米材料光电特性的影响
- 批准号:
356166-2008 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Internal Structure and Properties of Confined Layer-by-Layer Films and Nanotubes
职业:受限层状薄膜和纳米管的内部结构和性能
- 批准号:
1049706 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant