EAGER: Compressibility of Nanopore-Confined Liquids Probed by Ultrasonic Experiments
EAGER:通过超声波实验探测纳米孔限制液体的可压缩性
基本信息
- 批准号:2128679
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how waves propagate through geological material is important because it forms the basis for creating powerful characterization tools. For example, seismic waves can be used to learn about geological formations, and ultrasonic waves can be used to analyze rock samples in the laboratory. Wave propagation speed is determined by the compressibility of the material through which it passes. Because many geological materials are porous and filled with liquids (water, brine, petroleum, etc.), wave propagation depends on the compressibilities of both the solid and liquid parts. Therefore, by knowing the individual compressibility properties one can use wave propagation to determine how much liquid is contained within the pores of a solid. However, when the pore diameters measure a few nanometers across, the liquids confined in those pores may have very different compressibility properties than in bulk. This research project aims to quantify how confinement in nanopores changes the compressibility of a range of liquids. This research will advance the understanding of wave propagation in important nanoporous media, such as hydrocarbon-bearing shale. The knowledge gained from this research could contribute towards the more efficient exploration and development of energy resources, carbon dioxide sequestration, and large-scale energy storage technologies. This research project will contribute to improved STEM education through the inclusion of research-related topics in the undergraduate courses taught at the university. During the summer months high school interns from the NJIT ACS-SEED program for economically disadvantaged high-school students will work on projects related to this research.The objective of this research project is to explore the effects of confinement on the compressibility of fluids by means of adsorption-ultrasonic experiments. When fluids are confined in nanopores, many of their physico-chemical properties change as compared to bulk. A small number of experimental studies suggest that the compressibility of fluids confined in nanopores also deviates from the compressibility of the same fluids in bulk. Modeling studies predict that the departure of compressibility progressively increases with decreasing pore size. Thus, the central hypothesis of this research project is that confinement will change the elastic properties of all fluids when the pore size is comparable to the fluid molecule size and that the extent of this change is determined by the pore size and strength of the solid-fluid interactions. This research project will test this hypothesis experimentally and explore the effects of other parameters, such as the properties of the pore surface and the structure of the fluid molecules. Experimental confirmation of a significant departure of nano-confined fluid compressibility from the corresponding bulk values has transformative potential, requiring the revision of wave propagation theory in porous media when the media are nanoporous. This research project also will promote novel interdisciplinary perspectives by connecting the studies of compressibility of confined fluids (molecular thermodynamics) to studies of wave propagation in porous media (geophysics).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解波如何在地质材料中传播非常重要,因为它是创建强大的表征工具的基础。 例如,地震波可用于了解地质构造,超声波可用于在实验室中分析岩石样本。波的传播速度由它所通过的材料的可压缩性决定。由于许多地质材料是多孔的,充满了液体(水、盐水、石油等),波的传播取决于固体和液体部分的压缩率。 因此,通过了解各个压缩性特性,人们可以使用波传播来确定固体孔隙内包含多少液体。然而,当孔直径测量为几纳米时,限制在这些孔中的液体可能具有与本体非常不同的可压缩性。该研究项目旨在量化纳米孔中的限制如何改变一系列液体的可压缩性。这项研究将推进对波在重要的纳米多孔介质(如含烃页岩)中传播的理解。从这项研究中获得的知识有助于更有效地勘探和开发能源、二氧化碳封存和大规模储能技术。该研究项目将通过在大学教授的本科课程中纳入与研究相关的主题,有助于改善STEM教育。在夏季的几个月里,来自NJT ACS-SEED项目的高中实习生将从事与本研究相关的项目。本研究项目的目的是通过吸附探讨限制对流体可压缩性的影响-超声实验。当流体被限制在纳米孔中时,与本体相比,它们的许多物理化学性质发生变化。少数实验研究表明,被限制在纳米孔中的流体的可压缩性也偏离了本体中相同流体的可压缩性。模型研究预测,压缩性的偏离随着孔径的减小而逐渐增大。因此,该研究项目的中心假设是,当孔径与流体分子大小相当时,限制将改变所有流体的弹性性质,并且这种变化的程度由孔径和固-液相互作用的强度决定。本研究项目将通过实验验证这一假设,并探索其他参数的影响,如孔隙表面的性质和流体分子的结构。实验证实的一个显着偏离纳米约束流体的压缩性从相应的散装值具有变革的潜力,需要修订波在多孔介质中的传播理论时,介质是纳米多孔的。该研究项目还将通过将受限流体的可压缩性研究(分子热力学)与多孔介质中的波传播研究(物理学)相结合,促进新的跨学科观点。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasonic study of water adsorbed in nanoporous glasses
纳米多孔玻璃吸附水的超声研究
- DOI:10.1103/physreve.108.024802
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Ogbebor, Jason;Valenza, John J.;Ravikovitch, Peter I.;Karunarathne, Ashoka;Muraro, Giovanni;Lebedev, Maxim;Gurevich, Boris;Khalizov, Alexei F.;Gor, Gennady Y.
- 通讯作者:Gor, Gennady Y.
Molecular Simulation of Benzene Adsorption in Graphitic and Amorphous Carbon Slit Pores
石墨和非晶碳狭缝孔中苯吸附的分子模拟
- DOI:10.1021/acs.jced.2c00063
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ivanova, Ella V.;Emelianova, Alina;Khalizov, Alexei F.;Gor, Gennady Y.
- 通讯作者:Gor, Gennady Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gennady Gor其他文献
Gennady Gor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gennady Gor', 18)}}的其他基金
Elastic Properties of Confined Fluids and their Role for Wave Propagation in Nanoporous Media
受限流体的弹性特性及其对纳米多孔介质中波传播的作用
- 批准号:
2344923 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
14th International Conference on Fundamentals of Adsorption, FOA14
第十四届吸附基础国际会议,FOA14
- 批准号:
2136177 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF-DFG Confine: Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation
NSF-DFG Confine:纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动
- 批准号:
2234028 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Coupling Adsorption and Mechanics: Towards the Development of Smart Porous Materials
职业:吸附与力学的耦合:智能多孔材料的发展
- 批准号:
1944495 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Travel Grant for International Workshop on Characterization of Porous Materials
多孔材料表征国际研讨会旅费补助
- 批准号:
1818797 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Flow Dynamics in Buoyancy-Driven Variable-Density Turbulent Mixing with Compressibility Effects
具有压缩效应的浮力驱动变密度湍流混合中的流动动力学
- 批准号:
2234415 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Stiffness and Compressibility of Chemically Modified Phytoglycogen Nanoparticles
化学修饰植物糖原纳米颗粒的刚度和可压缩性
- 批准号:
575894-2022 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Multi-scale testing and modeling particle size effects on primary and secondary compressibility of crushable granular materials
多尺度测试和建模粒度对可破碎颗粒材料初级和次级压缩性的影响
- 批准号:
RGPIN-2019-06118 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale testing and modeling particle size effects on primary and secondary compressibility of crushable granular materials
多尺度测试和建模粒度对可破碎颗粒材料初级和次级压缩性的影响
- 批准号:
RGPIN-2019-06118 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale testing and modeling particle size effects on primary and secondary compressibility of crushable granular materials
多尺度测试和建模粒度对可破碎颗粒材料初级和次级压缩性的影响
- 批准号:
RGPIN-2019-06118 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale testing and modeling particle size effects on primary and secondary compressibility of crushable granular materials
多尺度测试和建模粒度对可破碎颗粒材料初级和次级压缩性的影响
- 批准号:
RGPIN-2019-06118 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Development of Computational Penetrator Dynamics Based on Gas Model with Irreversible Compressibility
基于不可逆压缩性气体模型的计算侵彻动力学的发展
- 批准号:
19H02339 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthesis of layered compounds based on differences in compressibility
基于压缩性差异的层状化合物的合成
- 批准号:
19K22230 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Enhanced compressibility of ultrafine-grained semi-solid two-phase aluminum alloys
超细晶粒半固态两相铝合金的增强压缩性
- 批准号:
19K04079 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)