Techniques in Symplectic Geometry and Applications

辛几何技术及其应用

基本信息

  • 批准号:
    2345030
  • 负责人:
  • 金额:
    $ 24.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The central goal in geometry and topology is to understand mathematical spaces. A mathematical space can be characterized by both local and global information, such as how curved it is (local) and how connected it is (global). As a subfield, symplectic geometry studies a special kind of space called a symplectic manifold. These spaces are all the same locally but can have a variety of global shapes. The main tools of study fall into two categories: algebraic and analytic. The algebraic tools are the frameworks of wrapping up global information and making calculations, while the analytic tools are techniques for solving differential equations and for constructing the algebraic frameworks. This research project aims to improve existing techniques and develop new tools to solve longstanding difficult questions, with emphasis on analytic methods. At the same time, the project will enrich the K-12 outreach (Math Circle) program at Texas A&M University, build a community of researchers in Texas and Central South America, and enhance connections among mathematics faculty and students. On the technical level, the project involves three topics. First, using the technique of virtual cycle and adiabatic limit, the research aims to establish the relationship between Witten's gauged linear sigma model and the nonlinear sigma model. In contrast to many algebraic approaches, the method is analytic, allowing one to extend to the open-string case where algebraic methods are not yet available. Second, using a new method, the PI plans to prove compactness results in situations where traditional approaches do not apply. This includes a compactness result in Atiyah-Floer conjecture, compactness for pseudoholomorphic curves regarding reversed surgery for cleanly-intersecting Lagrangian submanifolds, and compactness for pseudoholomorphic curves with certain singular Lagrangian boundary conditions. Third, the project aims to develop a new counting method to define Gromov-Witten invariants and Floer homology over integers. The PI will also train PhD students and advise undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何和拓扑的中心目标是理解数学空间。数学空间可以通过局部和全局信息来表征,例如它的弯曲程度(局部)以及它的连接程度(全局)。作为一个子领域,辛几何研究一种称为辛流形的特殊空间。这些空间在局部都是相同的,但可以具有多种全局形状。主要的研究工具分为两类:代数和分析。代数工具是包裹全局信息并进行计算的框架,而解析工具是求解微分方程和构建代数框架的技术。该研究项目旨在改进现有技术并开发新工具来解决长期存在的难题,重点是分析方法。同时,该项目将丰富德克萨斯农工大学K-12外展(数学圈)项目,在德克萨斯州和中南美洲建立研究人员社区,并加强数学教师和学生之间的联系。在技​​术层面,该项目涉及三个课题。首先,利用虚拟循环和绝热极限技术,建立Witten规范线性sigma模型和非线性sigma模型之间的关系。与许多代数方法相比,该方法是解析的,允许扩展到代数方法尚不可用的开弦情况。其次,PI 计划使用一种新方法来证明传统方法不适用的情况下的紧凑性结果。这包括 Atiyah-Floer 猜想中的紧致性结果、关于干净相交拉格朗日子流形的逆向手术的赝全纯曲线的紧致性、以及具有某些奇异拉格朗日边界条件的赝全纯曲线的紧致性。第三,该项目旨在开发一种新的计数方法来定义整数上的 Gromov-Witten 不变量和 Floer 同源性。 PI 还将培训博士生并为本科生提供建议。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guangbo Xu其他文献

Design of a High-Speed Signal Processing System for Underwater LiDAR Based on Complete Waveform Sampling
  • DOI:
    10.3390/asec2023-15268
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangbo Xu
  • 通讯作者:
    Guangbo Xu
Symplectic vortex equation and adiabatic limits
Counting pointlike instantons virtually without gluing
几乎无需粘合即可计算点状瞬子
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Tian;Guangbo Xu
  • 通讯作者:
    Guangbo Xu
Morse theory for Lagrange multipliers and adiabatic limits
拉格朗日乘子和绝热极限的莫尔斯理论
  • DOI:
    10.1016/j.jde.2014.08.018
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Schecter;Guangbo Xu
  • 通讯作者:
    Guangbo Xu
Gluing Affine Vortices
粘合仿射涡旋

Guangbo Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guangbo Xu', 18)}}的其他基金

Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
  • 批准号:
    2204321
  • 财政年份:
    2022
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant

相似海外基金

Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2022
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
Techniques in Symplectic Geometry and Applications
辛几何技术及其应用
  • 批准号:
    2204321
  • 财政年份:
    2022
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Standard Grant
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2021
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群作用和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2020
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群行为和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2019
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
Lie theoretic techniques in integrable systems and holomorphic symplectic geometry
可积系统和全纯辛几何中的李理论技术
  • 批准号:
    516638-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Postdoctoral Fellowships
Combinatorial techniques in symplectic geometry: moduli spaces of holomorphic vector bundles over curves
辛几何中的组合技术:曲线上全纯向量丛的模空间
  • 批准号:
    488168-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Postdoctoral Fellowships
Lie theoretic techniques in integrable systems and holomorphic symplectic geometry
可积系统和全纯辛几何中的李理论技术
  • 批准号:
    516638-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Postdoctoral Fellowships
Equivariant and combinatorial techniques in algebraic and symplectic geometry
代数和辛几何中的等变和组合技术
  • 批准号:
    326749-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
Group actions and symplectic techniques in Machine Learning and Computational Geometry
机器学习和计算几何中的群行为和辛技术
  • 批准号:
    RGPIN-2017-06901
  • 财政年份:
    2018
  • 资助金额:
    $ 24.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了