I-Corps: Hardware Accelerators for Real-Time Decision Making at the Edge

I-Corps:用于边缘实时决策的硬件加速器

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a computing platform for solving nonlinear optimization workloads at the edge. Nonlinear optimization is a foundational aspect of many critical and emerging technologies such as routing autonomous vehicles through a busy intersection, optimally pricing intermittent renewable energy on the grid, or predicting premature failure of manufacturing equipment. However, as technologies become distributed and decentralized, there is a growing need for these optimizations to be performed at the "edge" — that is, co-located with the physical device that is generating data and needs to be controlled or optimized, and typically on low-power embedded computing hardware, as opposed to a powerful cloud data center. In addition, existing edge devices typically do not have the capabilities to perform these intensive computing workloads, often comprised of complex nonlinear optimization-based processes. The proposed technology is designed to increase computational speeds and energy efficiency by an order-of-magnitude for solving complex nonlinear optimization problems and high-order partial differential equations. This may benefit multiple industries, including transportation, manufacturing, consumer electronics, and energy, and could enable reductions in both capital and operating expenses by more than fifty percent. Moreover, reductions in infrastructure and energy costs may be possible by minimizing the need to move data from the edge, where the data is generated, to centralized data centers, where workloads are typically processed today.This I-Corps project is based on the development of hardware accelerators that increase computational speeds and energy efficiency by an order-of-magnitude for solving complex nonlinear optimization problems and high-order partial differential equations. The hardware accelerator uses mixed-signal computing techniques for control and optimization and is referred to as Analog Neural Computing (ANC), which is a hybrid computing platform that leverages electronic analog computing techniques to solve nonlinear optimization and partial-differential equation workloads substantially faster and more efficiently than existing embedded computing platforms. The proposed technology has been demonstrated in handling certain nonlinear optimization workloads faster and more efficiently than existing state-of-the-art embedded computing platforms. Software and hardware techniques have been developed to maximize the accuracy, speed, and usability of the proposed computing approach. Nonlinear optimization is a crucial technology for efficiently controlling and monitoring a variety of important industrial processes. Recent progress has demonstrated the feasibility of obtaining robust and accurate solutions using these mixed-signal computing techniques, which are naturally subject to several undesired variations and phenomena, such as noise, operating point dependencies, and manufacturing variations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发一个计算平台,用于解决边缘的非线性优化工作负载。 非线性优化是许多关键和新兴技术的基础方面,例如在忙碌的十字路口引导自动驾驶汽车,对电网上的间歇性可再生能源进行最佳定价,或预测制造设备的过早故障。然而,随着技术变得分布式和去中心化,越来越需要在“边缘”执行这些优化-即与生成数据并需要控制或优化的物理设备位于同一位置,并且通常在低功耗嵌入式计算硬件上,而不是强大的云数据中心。此外,现有的边缘设备通常不具备执行这些密集型计算工作负载的能力,这些工作负载通常由复杂的非线性优化过程组成。所提出的技术旨在将计算速度和能源效率提高一个数量级,以解决复杂的非线性优化问题和高阶偏微分方程。 这可能会使多个行业受益,包括运输,制造,消费电子和能源,并可能使资本和运营费用减少50%以上。此外,通过最小化将数据从生成数据的边缘移动到集中式数据中心的需要,可以降低基础设施和能源成本,这个I-Corps项目是基于硬件加速器的开发,这些硬件加速器将计算速度和能源效率提高了一个数量级,用于解决复杂的非线性优化问题和高性能优化问题。阶偏微分方程硬件加速器使用混合信号计算技术进行控制和优化,并被称为模拟神经计算(ANC),这是一种混合计算平台,利用电子模拟计算技术来解决非线性优化和偏微分方程工作负载,比现有的嵌入式计算平台更快,更有效。 所提出的技术已被证明在处理某些非线性优化工作负载更快,更有效地比现有的国家的最先进的嵌入式计算平台。已经开发了软件和硬件技术,以最大限度地提高所提出的计算方法的准确性、速度和可用性。非线性优化是有效控制和监测各种重要工业过程的关键技术。最近的进展已经证明了使用这些混合信号计算技术获得鲁棒和精确解决方案的可行性,这些技术自然会受到一些不希望的变化和现象的影响,例如噪声,工作点依赖性和制造变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Poon其他文献

Effects of calcitonin gene‐related peptide receptor antagonists on renal actions of adrenomedullin
降钙素基因相关肽受体拮抗剂对肾上腺髓质素肾脏作用的影响
Application-based TCP hijacking
基于应用程序的 TCP 劫持
Receptor subtypes mediating renal actions of calcitonin gene-related peptide.
介导降钙素基因相关肽肾作用的受体亚型。

Jason Poon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Poon', 18)}}的其他基金

Collaborative Research: Electronic Analog & Hybrid Computing for Power & Energy Systems
合作研究:电子模拟
  • 批准号:
    2305431
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

POSE: Phase II: An Open Source Ecosystem for Collaborative Rapid Design of Edge AI Hardware Accelerators for Integrated Data Analysis and Discovery
POSE:第二阶段:用于协作快速设计边缘人工智能硬件加速器以进行集成数据分析和发现的开源生态系统
  • 批准号:
    2303700
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
  • 批准号:
    2347253
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: A Framework for Co-design and Optimization of Programmable Hardware Accelerators and Compilers
职业:可编程硬件加速器和编译器协同设计和优化的框架
  • 批准号:
    2238006
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Hardware support for reliable networking; from protocols to accelerators
可靠网络的硬件支持;
  • 批准号:
    RGPIN-2019-05951
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Hardware/Software Co-Design for Machine Learning Accelerators
机器学习加速器的硬件/软件协同设计
  • 批准号:
    RGPIN-2020-05889
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Self-Sketching Domain Specific Accelerators: Build Hardware from Software
自绘制领域特定加速器:从软件构建硬件
  • 批准号:
    RGPIN-2018-06795
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Hardware/Software Co-Design for Machine Learning Accelerators
机器学习加速器的硬件/软件协同设计
  • 批准号:
    RGPIN-2020-05889
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
Hardware support for reliable networking; from protocols to accelerators
可靠网络的硬件支持;
  • 批准号:
    RGPIN-2019-05951
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
  • 批准号:
    2105373
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Self-Sketching Domain Specific Accelerators: Build Hardware from Software
自绘制领域特定加速器:从软件构建硬件
  • 批准号:
    RGPIN-2018-06795
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了