Transfer of statistical learning from perception to production

将统计学习从感知转移到生产

基本信息

  • 批准号:
    2346989
  • 负责人:
  • 金额:
    $ 55.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Whether chatting with a friend at a café, discussing a topic in a classroom, or debating politics with a relative, we depend on our ability to communicate with many different people. Only 5 percent of the 7.5 billion English speakers are native talkers and there are also tremendous dialect differences in regional English. Thus, we quite often encounter a speaker whose speech differs from our own. Prior research demonstrates that links in how the brain coordinates listening and speaking can lead conversation partners to sound more like one another. The influence of what one hears on how one talks is often referred to as “transfer.” Transfer provides a window through which to better understand the mechanistic links between speech perception and speech production. This is important because it provides a foundation for broader impacts across a variety of domains, such as: 1) developing new technologies for effective education approaches in classrooms with language diversity; 2) assisting individuals with communication challenges like stuttering; 3) providing constraints to refine artificial intelligence and machine speech recognition systems; and 4) engineering brain prostheses that can restore speech lost to stroke.The current project focuses on understanding how the brain links what we hear with how we speak, even when changes are subtle and not consciously identifiable. The investigators take a novel approach to the study of transfer by manipulating the make-up of the speech stream in subtle but systematic ways. This method allows clear predictions about the expected changes to production if it is implicitly influenced by perception. Preliminary data suggest this is the case: creating a subtle accent by manipulating the pitch of a voice induces robust changes in how speakers produce the very same dimension. This influence goes beyond immediate imitation of heard speech (for example, repeating a just-heard word). Rather, it implies a more fundamental change to the speaker’s production system that likely involves a form of incremental learning through small, but persistent, neuroplastic changes to the brain. The current project will systematically investigate when and how transfer occurs in order to reveal the responsible mechanisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无论是在咖啡馆与朋友聊天,在教室讨论一个话题,还是与亲戚辩论政治,我们都依赖于与许多不同的人交流的能力。在75亿英语使用者中,只有5%的人是以英语为母语的人,而且在地区英语中也存在巨大的方言差异。因此,我们经常会遇到一个说话者,他的讲话与我们的不同。先前的研究表明,大脑如何协调听和说的联系可以导致谈话伙伴听起来更像彼此。一个人所听到的东西对他说话方式的影响通常被称为“转移”。迁移提供了一个窗口,通过它可以更好地理解言语感知和言语产生之间的机制联系。这一点很重要,因为它为在各个领域产生更广泛的影响奠定了基础,例如:1)在语言多样性的教室中开发有效教育方法的新技术; 2)帮助个人应对口吃等沟通挑战; 3)提供约束条件以完善人工智能和机器语音识别系统;以及4)设计大脑假体,可以恢复因中风而失去的言语。当前项目的重点是了解大脑如何将我们所听到的内容与我们的说话方式联系起来,即使变化很微妙并且无法有意识地识别。研究人员采用了一种新颖的方法来研究迁移,通过微妙但系统的方式操纵语音流的构成。这种方法允许明确预测生产的预期变化,如果它隐含地受到感知的影响。初步数据表明,情况确实如此:通过操纵声音的音高来创造一种微妙的口音,会导致说话者产生相同维度的方式发生强烈变化。这种影响超越了对听到的话语的即时模仿(例如,重复刚刚听到的单词)。相反,它意味着说话者的生产系统发生了更根本的变化,可能涉及到通过对大脑进行小而持久的神经可塑性变化来进行增量学习的形式。目前的项目将系统地调查转移发生的时间和方式,以揭示负责任的机制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nazbanou Nozari其他文献

Monitoring, control and repair in word production
文字制作中的监测、控制和修复
  • DOI:
    10.1038/s44159-025-00417-1
  • 发表时间:
    2025-02-10
  • 期刊:
  • 影响因子:
    21.800
  • 作者:
    Nazbanou Nozari
  • 通讯作者:
    Nazbanou Nozari
Is working memory domain-general or domain-specific?
  • DOI:
    10.1016/j.tics.2024.06.006
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nazbanou Nozari;Randi C. Martin
  • 通讯作者:
    Randi C. Martin
Bears don’t always mess with beers: Limits on generalization of statistical learning in speech
熊并不总是与啤酒混淆:语音中统计学习泛化的限制
  • DOI:
    10.3758/s13423-025-02690-w
  • 发表时间:
    2025-04-14
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Timothy K. Murphy;Nazbanou Nozari;Lori L. Holt
  • 通讯作者:
    Lori L. Holt

Nazbanou Nozari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nazbanou Nozari', 18)}}的其他基金

An adaptive model of lexical repairs in language production
语言生成中词汇修复的自适应模型
  • 批准号:
    2317121
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant
Transfer of statistical learning from perception to production
将统计学习从感知转移到生产
  • 批准号:
    2217415
  • 财政年份:
    2022
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant
Executive control in sentence production
句子生成中的执行控制
  • 批准号:
    1949631
  • 财政年份:
    2019
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant
Executive control in sentence production
句子生成中的执行控制
  • 批准号:
    1631993
  • 财政年份:
    2016
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Continuing Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
    Studentship
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
  • 批准号:
    10525098
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
Assessing Native Hawaiian and Pacific Islander Maternal Outcomes and Health Care Experiences
评估夏威夷原住民和太平洋岛民的产妇结局和医疗保健体验
  • 批准号:
    10644888
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
  • 批准号:
    10656870
  • 财政年份:
    2023
  • 资助金额:
    $ 55.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了