ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials

ERI:防止半导体材料破裂的机器学习框架

基本信息

  • 批准号:
    2347035
  • 负责人:
  • 金额:
    $ 19.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The performance and quality of semiconductor materials are critical to advanced technologies for a wide range of applications. A significant challenge in the production of these materials is the cooling process. During the production phase, semiconductor materials are prone to cracking as they cool. These cracks can lead to failures in the final products, decreased reliability, and higher manufacturing costs. This Engineering Research Initiation (ERI) award supports fundamental research aiming to prevent the formation of cracks during the semiconductor cooling process. The objective of this project is to develop a novel method that integrates machine learning techniques with fundamental principles of mechanics to predict crack formation. This research will enhance production of high-quality semiconductor materials. This project will also make significant contributions to the field of STEM education. A widely accessible Virtual Mechanical Testing Lab will be established, which will use interactive virtual tools to educate students about testing materials. Special efforts will also be made to engage students who have historically been underrepresented in STEM fields in this research.The goal of this project is to develop a mechanics-informed machine learning framework to predict and quantify interfacial cracking in semiconductor materials, specifically at silicon carbide/aluminum nitride (SiC/AlN) interfaces during the cooling process. Recognizing that interfacial defects and residual stresses are critical factors in cracking, the research aim is to use advanced machine learning and simulation techniques to identify the mechanisms of cracking and proactively prevent it. The machine learning model will be trained using atomistic simulations of cracking behaviors, providing innovative insights into the design of semiconductor materials. The potential contributions of this research are numerous, aiming not only to mitigate damage in semiconductor interfaces, thereby revolutionizing their design and production, but also to develop an integrated machine learning framework with uncertainty quantification, which will have broader applicability in predicting behaviors and properties of other materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体材料的性能和质量对于广泛应用的先进技术至关重要。生产这些材料的一个重大挑战是冷却过程。在生产阶段,半导体材料在冷却时容易开裂。这些裂纹会导致最终产品的故障、可靠性降低和制造成本增加。该工程研究启动(ERI)奖支持旨在防止半导体冷却过程中裂纹形成的基础研究。该项目的目标是开发一种新的方法,将机器学习技术与力学的基本原理相结合,以预测裂纹的形成。这项研究将促进高质量半导体材料的生产。该项目也将为STEM教育领域做出重大贡献。将建立一个可广泛访问的虚拟机械测试实验室,该实验室将使用交互式虚拟工具来教育学生测试材料。该项目的目标是开发一个机械信息机器学习框架,以预测和量化半导体材料的界面开裂,特别是在冷却过程中碳化硅/氮化铝(SiC/AlN)界面的开裂。由于认识到界面缺陷和残余应力是开裂的关键因素,研究的目标是使用先进的机器学习和模拟技术来识别开裂机制并主动预防它。机器学习模型将使用开裂行为的原子模拟进行训练,为半导体材料的设计提供创新见解。这项研究的潜在贡献是多方面的,不仅旨在减轻半导体接口的损坏,从而彻底改变其设计和生产,而且还旨在开发一个具有不确定性量化的集成机器学习框架,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shengfeng Yang其他文献

Modeling and Analysis of the thermal effects of the Circular bimorph Piezoelectric Actuator
圆形双压电晶片压电执行器热效应的建模与分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Hairen Wang;Shengfeng Yang
  • 通讯作者:
    Shengfeng Yang
Measurement of charmless semileptonic decays of B mesons.
B 介子的无魅力半轻衰变的测量。
  • DOI:
    10.1103/physrevlett.71.4111
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    J. Bartelt;S. Csorna;Z. Egyed;V. Jain;D. Akerib;B. Barish;M. Chadha;S. Chan;D. Cowen;G. Eigen;J. Miller;C. O'grady;J. Urheim;A. Weinstein;D. Acosta;M. Athanas;G. Masek;H. Paar;M. Sivertz;A. Bean;J. Gronberg;R. Kutschke;S. Menary;R. J. Morrison;S. Nakanishi;H. Nelson;T. K. Nelson;J. Richman;A. Ryd;H. Tajima;D. Schmidt;D. Sperka;M. Witherell;M. Procario;Shengfeng Yang;K. Cho;M. Daoudi;W. T. Ford;D. R. Johnson;K. Lingel;M. Lohner;P. Rankin;J. Smith;J. Alexander;C. Bebek;K. Berkelman;D. Besson;T. Browder;D. Cassel;H. Cho;D. Coffman;P. Drell;R. Ehrlich;M. Garcia;B. Geiser;B. Gittelman;S. Gray;D. Hartill;B. Heltsley;C. D. Jones;S. L. Jones;J. Kandaswamy;N. Katayama;P. Kim;D. Kreinick;G. S. Ludwig;J. Masui;J. Mevissen;N. Mistry;C. Ng;E. Nordberg;M. Ogg;J. Patterson;D. Peterson;D. Riley;S. Salman;M. Sapper;H. Worden;F. Würthwein;P. Avery;A. Freyberger;J. Rodríguez;R. Stephens;J. Yelton;D. Cinabro;Shawn Henderson;K. Kinoshita;T. Liu;M. Saulnier;F. Shen;R. Wilson;H. Yamamoto;B. Ong;M. Selen;A. Sadoff;R. Ammar;S. Ball;P. Baringer;D. Coppage;N. Copty;R. Davis;N. Hancock;M. Kelly;N. Kwak;H. Lam;Y. Kubota;M. Lattery;J. Nelson;S. Patton;D. Perticone;R. Poling;V. Savinov;S. Schrenk;R. Wang;M. Alam;I. J. Kim;B. Nemati;J. O’Neill;H. Severini;C. Sun;M. Zoeller;G. Crawford;M. Daubenmeir;R. Fulton;D. Fujino;K. Gan;K. Honscheid;H. Kagan;R. Kass;J. Lee;R. Malchow;F. Morrow;Y. Skovpen;M. Sung;C. White;J. Whitmore;P. Wilson;F. Butler;X. Fu;G. Kalbfleisch;M. Lambrecht;W. Ross;P. Skubic;J. Snow;P. Wang;M. Wood;D. Bortoletto;D. Brown;J. Fast;R. McIlwain;T. Miao;D. H. Miller;M. Modesitt;S. Schaffner;E. Shibata;I. Shipsey;Pu Wang;M. Battle;J. Ernst;H. Kroha;S. Roberts;K. Sparks;E. Thorndike;Cong Wang;V. Chelkov;J. Dominick;S. Sanghera;T. Skwarnicki;R. Stroynowski;I. Volobouev;P. Zadorozhny;M. Artuso;Daqing He;M. Goldberg;N. Horwitz;R. Kennett;G. Moneti;F. Muheim;Y. Mukhin;S. Playfer;Y. Rozen;S. Stone;M. Thulasidas;G. Vasseur;G. Zhu
  • 通讯作者:
    G. Zhu
Concurrent and continuum simulation of bi-crystal strontium titanate with tilt grain boundary
倾斜晶界双晶钛酸锶的并行连续模拟
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengfeng Yang;Youping Chen
  • 通讯作者:
    Youping Chen
Recovery of astaxanthin from discharged wastewater during the production of chitin
  • DOI:
    10.1007/s11802-012-1817-x
  • 发表时间:
    2012-04-29
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Xiaolin Chen;Shengfeng Yang;Ronge Xing;Huahua Yu;Song Liu;Pengcheng Li
  • 通讯作者:
    Pengcheng Li
Concurrent atomistic–continuum simulation of polycrystalline strontium titanate
多晶钛酸锶的并行原子连续模拟
  • DOI:
    10.1080/14786435.2015.1076178
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Shengfeng Yang;Ning Zhang;Youping Chen
  • 通讯作者:
    Youping Chen

Shengfeng Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 19.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了