Applied Abstract Elementary Classes
应用抽象初级班
基本信息
- 批准号:2348881
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Model theory is a branch of mathematical logic that studies and classifies classes of mathematical structures, such as the class of vector spaces, graphs, and groups. Classical model theory focuses on studying classes of structures that can be defined by sets of finite sentences (first-order logic). Although many classes are defined by sets of finite sentences, there are many that can only be defined using sets of infinite sentences (infinitary logic). The setting of this project is that of abstract elementary classes (AECs for short) which is a setting where one can study classes defined by sets of infinite sentences. AECs have been studied since the late seventies, and recently, the theory has developed very rapidly. The objective of this project is to continue the PI's work on finding interactions and applications of AECs to algebra. More precisely, the project focuses on finding interactions and applications of AECs to module theory and acts (polygons, G-sets) theory. The first part of the project focuses on continuing the development of AECs of modules. A key problem is to determine the stability behavior of AECs of modules with pure embeddings. The second part of the project focuses on developing a parallel theory for acts to what the PI has been able to accomplish for modules. A fundamental notion that will be studied on AECs of acts is independence relations (non-forking for AECs). The PI expects that these studies will help him better understand the strengths and limitations of independence relations, so he can apply them in other settings in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论是数学逻辑的一个分支,研究数学结构的分类,如向量空间、图和群。经典模型论专注于研究可以由有限句集(一阶逻辑)定义的结构类。虽然许多类是由有限句的集合定义的,但也有许多类只能使用无限句的集合(无限逻辑)来定义。这个项目的背景是抽象基本类(简称AEC),这是一个可以学习由无限句子集定义的类的背景。自70年代末以来,人们开始研究AEC,近年来,该理论发展非常迅速。这个项目的目标是继续PI的工作,寻找相互作用和应用的AEC代数。更确切地说,该项目的重点是寻找AEC的模块理论和行为(多边形,G集)理论的相互作用和应用。该项目的第一部分侧重于继续开发模块的AEC。一个关键问题是确定具有纯嵌入的模的AEC的稳定性行为。该项目的第二部分侧重于开发一个平行的理论行为PI已经能够完成的模块。 一个基本的概念,将研究的行为AEC是独立关系(非分叉AEC)。PI希望这些研究将帮助他更好地理解独立关系的优势和局限性,以便他将来能够将其应用于其他环境。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcos Mazari Armida其他文献
Marcos Mazari Armida的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
The interaction of concrete vs. abstract message types and time of day on prosocial behaviors.
具体与抽象消息类型以及一天中的时间对亲社会行为的相互作用。
- 批准号:
24K16470 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
eTALK embodied Thought for Abstract Language Knowledge
eTALK体现了抽象语言知识的思想
- 批准号:
EP/Y029534/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Abstract rigidity for natural stability problems
自然稳定性问题的抽象刚性
- 批准号:
EP/X036723/1 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Research on Abstract Design Protection in Design Law
外观设计法中抽象设计保护研究
- 批准号:
23K18754 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Wave propagation study of abstract dynamical systems with applications
抽象动力系统的波传播研究及其应用
- 批准号:
RGPIN-2022-03842 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Discovery Grants Program - Individual
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
- 批准号:
RGPIN-2017-05712 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Discovery Grants Program - Individual
Formal Analysis of Abstract Behavioural Models Using Automated Deductive Reasoning
使用自动演绎推理对抽象行为模型进行形式化分析
- 批准号:
RGPIN-2016-03992 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
- 批准号:
2205852 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Using Abstract Networks to Study Symmetry
使用抽象网络研究对称性
- 批准号:
FT210100256 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
ARC Future Fellowships