Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis

合作研究:抽象、应用和计算谐波分析主题

基本信息

  • 批准号:
    2205852
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The underlying theoretical mechanisms supporting the digital world that our societies benefit from today result from sophisticated mathematics developed over many centuries. Among the mathematical tools employed in modern signal processing, Fourier analysis stands as one of the key players. In particular, the methods developed in Fourier analysis are instrumental in decomposing complex signals into their elementary building blocks. This project will push the current understanding of several modern tools related to Fourier analysis in applications such as data science, signal processing, and quantum information theory beyond their current frontiers. Moreover, this project's educational component will allow the investigators to continue training students in the underlying mathematics fields it covers. The investigators will also integrate the outcomes of this research program into graduate and advanced undergraduate courses offered at their respective institutions. The project will solve some fundamental and unresolved problems in time-frequency analysis, especially the Heil-Ramanathan-Topiwala (HRT) conjecture (which asserts that every finite collection of time-frequency shifts of a square-integrable function must be linearly independent) and several other related unresolved problems. These problems arise in time-frequency analysis and are at the intersection of many areas of mathematics, applied mathematics, and even engineering. The investigators will attack these problems from a multi-field approach, bringing to bear techniques from abstract, applied computational harmonic analysis, ergodic theory, Lie group, Lie algebra, complex, functional, and real analysis. This research will build on recent successes of applied and pure harmonic analysis, which include the wavelet-based JPEG standard, advances in phaseless reconstruction, and the fundamental role played by Gabor (or Weyl-Heisenberg) systems in the detection of the gravitational waves. A standard paradigm in many of these applications consists of decomposing arbitrary signals into redundant elementary building blocks. While the redundancy of these systems might seem counterintuitive for their use, it is nonetheless responsible for the robustness of certain algorithms for data transmission using unreliable channels. It will play a vital role in noise reduction algorithms. Wavelets and Gabor systems are examples of redundant systems, and such systems can represent many natural signals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
支持我们社会今天受益的数字世界的基本理论机制来自许多世纪以来发展的复杂数学。在现代信号处理中使用的数学工具中,傅立叶分析是关键的参与者之一。特别是,傅立叶分析中开发的方法有助于将复杂信号分解为基本构建块。该项目将推动当前对数据科学,信号处理和量子信息理论等应用中与傅立叶分析相关的几种现代工具的理解超越其当前的前沿。此外,该项目的教育部分将允许调查人员继续培训学生在其涵盖的基础数学领域。研究人员还将把该研究项目的成果整合到各自机构提供的研究生和高级本科课程中。该项目将解决时频分析中的一些基本和未解决的问题,特别是Heil-Ramanathan-Topiwala(HRT)猜想(该猜想断言平方可积函数的时频位移的每个有限集合必须是线性独立的)和其他几个相关的未解决问题。这些问题出现在时频分析中,并且处于数学,应用数学甚至工程的许多领域的交叉点。调查人员将攻击这些问题从多领域的方法,使承担技术从抽象的,应用计算谐波分析,遍历理论,李群,李代数,复杂,功能,和真实的分析。这项研究将建立在最近成功的应用和纯谐波分析,其中包括基于小波的JPEG标准,在无相重建的进展,以及在引力波的检测中发挥的基本作用的Gabor(或Weyl-Heisenberg)系统。在许多这些应用中的标准范例包括将任意信号分解成冗余的基本构建块。虽然这些系统的冗余对于它们的使用来说似乎是违反直觉的,但它仍然是使用不可靠信道进行数据传输的某些算法的鲁棒性的原因。它将在降噪算法中发挥至关重要的作用。Wavelet和Gabor系统是冗余系统的例子,这些系统可以代表许多自然信号。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vignon Oussa其他文献

Letter to the Editor: On a Special Configuration for the HRT Conjecture
On Exponential Bases and Frames with Non-linear Phase Functions and Some Applications
Characterization of Shift-Invariant Spaces on a Class of Nilpotent Lie Groups with Applications
Full spark frames in the orbit of a representation
  • DOI:
    10.1016/j.acha.2020.06.003
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Romanos Diogenes Malikiosis;Vignon Oussa
  • 通讯作者:
    Vignon Oussa
Characterization of regularity for a connected Abelian action
  • DOI:
    10.1007/s00605-015-0811-y
  • 发表时间:
    2015-08-28
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Didier Arnal;Bradley Currey;Vignon Oussa
  • 通讯作者:
    Vignon Oussa

Vignon Oussa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152288
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SBP: Scientific topics and careers at the intersection: an algorithmic approach
合作研究:SBP:交叉点上的科学主题和职业:算法方法
  • 批准号:
    2152303
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726699
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Interactive Online Support for Open-Ended Problem Solving Spanning Science Practices and Domain Topics
协作研究:跨科学实践和领域主题的开放式问题解决的交互式在线支持
  • 批准号:
    1726856
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512267
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Dimensional Projection Tests and Related Topics
合作研究:高维投影测试及相关主题
  • 批准号:
    1512422
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
  • 批准号:
    1413603
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
III: Medium: Collaborative Research: Closing the User-Model Loop for Understanding Topics in Large Document Collections
III:媒介:协作研究:关闭用户模型循环以理解大型文档集合中的主题
  • 批准号:
    1409287
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Topics in Many-Body Theory
协作研究:多体理论主题
  • 批准号:
    1401410
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了