Cyber Security of Power System Model Dataset: Threats, Impacts, and Defenses

电力系统模型数据集的网络安全:威胁、影响和防御

基本信息

  • 批准号:
    2348991
  • 负责人:
  • 金额:
    $ 28.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Electric power systems are the Nation’s critical infrastructures that are indispensable for basic functioning the modern society. In the information era, the operation of power systems is increasingly dependent on cyber technologies such as sensing, communication, computing, and data storage. Consequently, cyber security has become a major concern, which if not properly taken care of, may seriously affect the reliability of power delivery. The power network model dataset, which mathematically describes the electrical characteristics of power systems, serves as the basis for many applications in system operations, such as security assessment, electricity markets, and various control and protection functions. Hence, maintaining accuracy and authenticity of power system model dataset is of ultimate importance. Recently, there have been extensive discussions on the security of other operational datasets such as measurement datasets, but few efforts have been dedicated to studying the security of network model datasets. As have been clearly revealed by cyber-attack events that already happened in other countries, knowledgeable cyber attackers are capable of intruding into the computer networks of control centers and acquire privileges of internal personnel, which can pose great risks on power system model datasets. This project aims to initiate investigation on potential threats against information security of power system model datasets, their possible impacts on electricity market operations, as well as effective defense measures. The proposed framework will help understand the vulnerabilities that may be exploited by cyber adversaries, as well as the economic consequences once electricity markets are manipulated via model data falsification. By developing effective measures against potential threats, the project is expected to provide knowledge on strengthening the cyber-secure operation of power systems, thus benefiting national defense as well as public welfare. The project will also benefit undergraduate and graduate education by introducing cyber-physical perspectives into power system courses.This project aims to develop a comprehensive framework for analyses of the threats, impacts, and defenses regarding the model dataset security issues. We compare the accessibility, modifiability, and attack motivations of model datasets and measurement datasets, and show that the practicality of cyber-attacks against model datasets cannot be overlooked. The proposed work encompasses three closely-related research tasks. In Task 1, various patterns of stealthy attacks against network model datasets will be identified and modeled. The possibility of launching coordinated attacks against measurement and model datasets will also be studied. Task 2 will establish the framework for studying the impacts of model data falsifications on the operation of electricity markets. For quantification of the impacts, a bilevel optimization problem will be formulated, and efficient solution algorithms will be provided. Task 3 will create a systematic security assessment method for identification of all high-impact patterns of model dataset attacks, and develop two measurement-based measures for mitigating the security vulnerabilities in the system planning stage and operation stage, respectively. A proper validation plan will be carried out for validating both the proposed concepts of model data cyber security, and the proposed methods to analyze, quantify, and mitigate the security vulnerabilities. For the first time, the proposed research will formally establish the conceptual linkage between the information security of model dataset and operational security of power networks, and develop systematic methodologies for assessing the security risks and design mitigation measures. The proposed work will bring the community’s attention to the information security of power system model datasets, and initiate the advancement of knowledge along this line.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电力系统是国家的关键基础设施,是现代社会基本运转所不可缺少的。在信息时代,电力系统的运行越来越依赖于传感、通信、计算和数据存储等网络技术。因此,网络安全已成为一个重大问题,如果处理不当,可能会严重影响供电的可靠性。电力网络模型数据集以数学方式描述电力系统的电气特性,是系统运行中许多应用的基础,例如安全评估、电力市场以及各种控制和保护功能。因此,保持电力系统模型数据的准确性和真实性至关重要。近年来,人们对测量数据集等其他操作数据集的安全性进行了广泛的讨论,但对网络模型数据集安全性的研究却很少。国外已经发生的网络攻击事件已经清楚地表明,知识渊博的网络攻击者能够侵入控制中心的计算机网络并获取内部人员的特权,从而对电力系统模型数据集造成巨大的风险。本项目旨在调查电力系统模型数据集对信息安全的潜在威胁,对电力市场运行可能产生的影响,以及有效的防御措施。拟议的框架将有助于了解网络对手可能利用的漏洞,以及一旦通过模型数据伪造操纵电力市场所造成的经济后果。通过制定针对潜在威胁的有效措施,该项目有望提供加强电力系统网络安全运行的知识,从而有利于国防和公共福利。该项目还将通过将网络物理观点引入电力系统课程,使本科和研究生教育受益。该项目旨在开发一个全面的框架,用于分析有关模型数据集安全问题的威胁、影响和防御。我们比较了模型数据集和测量数据集的可访问性、可修改性和攻击动机,并表明针对模型数据集的网络攻击的实用性不容忽视。拟议的工作包括三个密切相关的研究任务。在任务1中,将识别和建模针对网络模型数据集的各种隐蔽攻击模式。还将研究针对测量和模型数据集发动协同攻击的可能性。任务2将建立研究模型数据造假对电力市场运行影响的框架。为了量化影响,将制定一个双层优化问题,并提供有效的求解算法。任务3将创建一个系统的安全评估方法,用于识别模型数据集攻击的所有高影响模式,并制定两个基于度量的措施,分别在系统规划阶段和操作阶段减轻安全漏洞。将执行适当的验证计划,以验证所提出的模型数据网络安全概念,以及所提出的分析、量化和减轻安全漏洞的方法。该研究将首次正式建立模型数据集信息安全与电网运行安全之间的概念联系,并制定系统的方法来评估安全风险和设计缓解措施。所提出的工作将引起社会对电力系统模型数据集信息安全的关注,并启动这方面的知识进步。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuzhang Lin其他文献

A Comprehensive Framework for Robust AC/DC Grid State Estimation Against Measurement and Control Input Errors
针对测量和控制输入误差的鲁棒交流/直流电网状态估计的综合框架
  • DOI:
    10.1109/tpwrs.2021.3105391
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Zhi Fang;Yuzhang Lin;Shaojian Song;Chi Li;Xiaofeng Lin;Fei Wang;Yimin Lu
  • 通讯作者:
    Yimin Lu
Information-theoretic analysis of x-ray photoabsorption based threat detection system for check-point
基于X射线光吸收的检查站威胁检测系统的信息论分析
  • DOI:
    10.1117/12.2223803
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuzhang Lin;G. G. Allouche;James L. Huang;A. Ashok;Qian Gong;David Coccarelli;Razvan;M. Gehm
  • 通讯作者:
    M. Gehm
Graph-learning-assisted state estimation using sparse heterogeneous measurements
使用稀疏异构测量的图学习辅助状态估计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Han Yue;Wentao Zhang;U. Yilmaz;Tuna Yildiz;Heqing Huang;Hongfu Liu;Yuzhang Lin;Ali Abur
  • 通讯作者:
    Ali Abur
Strategic Use of Synchronized Phasor Measurements to Improve Network Parameter Error Detection
战略性地使用同步相量测量来改进网络参数错误检测
  • DOI:
    10.1109/tsg.2017.2686095
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Yuzhang Lin;A. Abur
  • 通讯作者:
    A. Abur
State Estimation for Situational Awareness of Active Distribution System With Photovoltaic Power Plants
光伏电站主动配电系统态势感知状态估计
  • DOI:
    10.1109/tsg.2020.3009571
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Zhi Fang;Yuzhang Lin;Shaojian Song;Chi Li;Xiaofeng Lin;Yanbo Chen
  • 通讯作者:
    Yanbo Chen

Yuzhang Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuzhang Lin', 18)}}的其他基金

CAREER: Transforming Distribution System Situational Awareness via Continuous-Time Adaptive Data Fusion
职业:通过连续时间自适应数据融合改变配电系统态势感知
  • 批准号:
    2348289
  • 财政年份:
    2023
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Continuing Grant
CAREER: Transforming Distribution System Situational Awareness via Continuous-Time Adaptive Data Fusion
职业:通过连续时间自适应数据融合改变配电系统态势感知
  • 批准号:
    2143021
  • 财政年份:
    2022
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Continuing Grant
Cyber Security of Power System Model Dataset: Threats, Impacts, and Defenses
电力系统模型数据集的网络安全:威胁、影响和防御
  • 批准号:
    1947617
  • 财政年份:
    2020
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant

相似海外基金

MRI:Acquisition of a Network Emulator for Cyber Security Research of Electric Power Grids
MRI:购买网络模拟器用于电网网络安全研究
  • 批准号:
    2214441
  • 财政年份:
    2022
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant
The Royal-Imperial Black Box: A low cost and novel approach for enhanced power system cyber-security featuring moving target defence
皇家帝国黑匣子:一种低成本、新颖的方法,用于增强电力系统网络安全,具有移动目标防御功能
  • 批准号:
    10017536
  • 财政年份:
    2021
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Collaborative R&D
The Royal-Imperial Black Box: A low cost and novel approach for enhanced power system cyber-security featuring moving target defence.
皇家帝国黑匣子:一种低成本、新颖的方法,用于增强电力系统网络安全,具有移动目标防御功能。
  • 批准号:
    10002804
  • 财政年份:
    2021
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Collaborative R&D
Cyber Security of Power System Model Dataset: Threats, Impacts, and Defenses
电力系统模型数据集的网络安全:威胁、影响和防御
  • 批准号:
    1947617
  • 财政年份:
    2020
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant
GCHQ: A journey from cyber security to cyber power (2009 - 2022)
GCHQ:从网络安全到网络力量的旅程(2009 - 2022)
  • 批准号:
    2286603
  • 财政年份:
    2019
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Studentship
Malware Informatics as a Power Base of Cyber Security Analysis
恶意软件信息学作为网络安全分析的动力基础
  • 批准号:
    16H02832
  • 财政年份:
    2016
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Cyber-security of Electric Power Systems: Theft and Systemic Failure
职业:电力系统的网络安全:盗窃和系统故障
  • 批准号:
    1351621
  • 财政年份:
    2014
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant
SBIR Phase II: Cyber Security Monitoring for Critical Embedded and Wireless Systems Using Power Fingerprinting
SBIR 第二阶段:使用电源指纹识别关键嵌入式和无线系统的网络安全监控
  • 批准号:
    1330970
  • 财政年份:
    2013
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant
Practical cyber security for next generation power transmission networks
下一代输电网络的实用网络安全
  • 批准号:
    LP120200246
  • 财政年份:
    2013
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Linkage Projects
CPS: Medium: Collaborative Research: The Cyber-Physical Challenges of Transient Stability and Security in Power Grids
CPS:中:协作研究:电网暂态稳定性和安全的网络物理挑战
  • 批准号:
    1135819
  • 财政年份:
    2011
  • 资助金额:
    $ 28.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了