B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)

B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)

基本信息

  • 批准号:
    2349138
  • 负责人:
  • 金额:
    $ 499.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future.The broader impact and potential societal benefits of this Convergence Accelerator Phase II project will be to generate technology-based learning solutions that can support and augment the performance and safety of emergency response (ER) personnel. Academic researchers, core-technology developers, stakeholders, and an advisory board constituted of leaders from industry and government will come together to assess opportunities and challenges related to the use of human augmentation technologies (HATs) that can transform the process of foundational, use-inspired solution-finding for ER work, and in a way that is transferable to other work contexts as well. This will involve the development and evaluation of LEARNER (Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders), a mixed-reality learning environment with physical, augmented, and virtual reality components, for users to learn to work effectively with two HAT classes: powered exoskeletons (EXO) and head-worn AR interfaces (AR). Our effort will contribute to better conceptualize convergence work that can foster the understanding of reciprocal human-technology interactions; contribute to systems that are tailored, optimized, and continuously adapted for humans and their environments; and education and lifelong learning to create the requisite workforce. Our effort will also serve as a model for other research communities that can benefit from working across traditional disciplinary boundaries in engineering, computer science, learning sciences, and human resource development. We will share our methods, learnings and findings with the ER community and the wider world by leading a National Talent Ecosystem Council, a collaborative think-tank organization, to support scientific research activities on workforce learning with advanced technologies and organizing Learn-X symposiums on the topic of technology-driven advances in learning-sciences and educational/human resource development.We will develop and evaluate a functional prototype of LEARNER – an innovative accessible, modular, personalized, and scalable learning platform to accelerate skilling and reskilling of ER workers, particularly on nascent augmentation technologies that have significant potential to change the very nature of work and improve efficiency, health, and well-being. LEARNER will provide a unique training paradigm by incorporating physiological, neurological, and behavioral markers of learning into real-time scenario evolution. The proposed virtual and physical user interfaces and interaction techniques will advance the human-computer interaction field by providing a multisensory approach for ER simulation and synchronized virtual interactions with physical environments and work artifacts. Furthermore, our plan to field these HATs and develop an effective learning platform has significant transformative potential as EXOs and AR will enable users to formulate new work strategies at the individual and team levels enabled by their newly extended physical and perceptual capabilities. Finally, our work will advance learning by creating a scalable and replicable platform that will increase the speed of integration and adoption of innovative and emerging HATs that benefit the future workforce across diverse industrial sectors. Our transdisciplinary approach converges and enhances the existing knowledge from the disciplines of learning science, computer science, virtual and augmented realities, human factors, cognitive psychology, and systems engineering to create the LEARNER platform that integrates training course design, innovative and emerging technology implementation, and new techniques of work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国国家科学基金会融合加速器支持使用启发,基于团队的,多学科的努力,解决国家的重要性的挑战,并将产生交付价值的社会在不久的将来。更广泛的影响和潜在的社会效益,这个融合加速器第二阶段项目将产生基于技术的学习解决方案,可以支持和增强应急响应(ER)人员的性能和安全。学术研究人员,核心技术开发人员,利益相关者以及由行业和政府领导人组成的咨询委员会将聚集在一起,评估与人类增强技术(HAT)使用相关的机遇和挑战,这些技术可以改变ER工作的基础,使用启发的解决方案寻找过程,并以一种可转移到其他工作环境的方式。这将涉及开发和评估LEARNER(面向下一代应急响应人员的增强和机器人学习环境),这是一个具有物理,增强和虚拟现实组件的混合现实学习环境,供用户学习使用两种HAT类有效工作:动力外骨骼(EXO)和头戴式AR界面(AR)。我们的努力将有助于更好地将融合工作概念化,从而促进对人类与技术相互作用的理解;有助于为人类及其环境量身定制,优化和不断适应的系统;以及教育和终身学习,以创造必要的劳动力。我们的努力也将成为其他研究团体的典范,这些研究团体可以从工程,计算机科学,学习科学和人力资源开发等传统学科界限中受益。我们将通过领导一个国家人才生态系统理事会,一个合作智库组织,支持关于利用先进技术进行劳动力学习的科学研究活动,并组织关于技术驱动的学习科学和教育进步的Learn-X专题讨论会。人力资源开发。我们将开发和评估LEARNER的功能原型-一个创新的可访问的,模块化的,个性化的和可扩展的学习平台,以加速ER工作人员的技能和再技能,特别是在新兴的增强技术上,这些技术具有改变工作性质和提高效率、健康和福祉的巨大潜力。LEARNER将提供一个独特的训练模式,将生理学,神经学和行为学的学习标记纳入实时情景演变。拟议的虚拟和物理用户界面和交互技术将推进人机交互领域提供一个多感官的方法ER模拟和同步虚拟交互与物理环境和工作工件。此外,我们计划将这些HAT投入使用并开发一个有效的学习平台,这具有巨大的变革潜力,因为EXO和AR将使用户能够通过他们新扩展的身体和感知能力,在个人和团队层面制定新的工作策略。最后,我们的工作将通过创建一个可扩展和可复制的平台来促进学习,该平台将提高创新和新兴HAT的集成和采用速度,从而使不同工业部门的未来劳动力受益。我们的跨学科方法融合并增强了学习科学,计算机科学,虚拟和增强现实,人为因素,认知心理学和系统工程等学科的现有知识,以创建LEARNER平台,该平台集成了培训课程设计,创新和新兴技术实施,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjana Mehta其他文献

On a regularity-conjecture of generalized binomial edge ideals
  • DOI:
    10.1007/s13348-024-00452-w
  • 发表时间:
    2024-08-20
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    J. Anuvinda;Ranjana Mehta;Kamalesh Saha
  • 通讯作者:
    Kamalesh Saha
Unboundedness of the first Betti number and the last Betti number of numerical semigroups generated by concatenation

Ranjana Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjana Mehta', 18)}}的其他基金

CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2033592
  • 财政年份:
    2020
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Cooperative Agreement
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    1900704
  • 财政年份:
    2019
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
RAPID: Human-Robotic Interactions During Harvey Recovery Operations
RAPID:哈维恢复操作期间的人机交互
  • 批准号:
    1760479
  • 财政年份:
    2017
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多参数双能CT深度迁移学习整体刻画胰腺癌免疫微环境并预测预后
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度学习的湖泊及周边养殖水体识别与在线分析系统
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多模态大模型的智能机器人复杂动态环境具身感知与学习机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于人工智能的乳腺癌免疫微环境评估新模型的建立与应用研究
  • 批准号:
    RG25H160001
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新质人才培养视域下职业教育智慧学习环境的重构机理与创设机制
  • 批准号:
    2025JJ80326
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于生理-行为-环境多源感知的心理学实验范式变革:自适应深度学习系统的技术实现与验证
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
海洋环境干扰下具有二阶非完整约束的 无人艇编队学习控制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
开放环境下鲁棒视觉基础模型中的关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
拒止环境中多智能体强化学习无人机集群竞争调度方法研究
  • 批准号:
    2025JJ60426
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
开放环境下全景图像目标检测方法研究
  • 批准号:
    QN25F020045
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
  • 批准号:
    2348995
  • 财政年份:
    2024
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
CAREER: Transforming Peer Code Review Environments for Code Learning and High-Quality Feedback
职业:转变同行代码审查环境以实现代码学习和高质量反馈
  • 批准号:
    2340389
  • 财政年份:
    2024
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
  • 批准号:
    10662674
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
Creating Autonomy-Supportive Learning Environments Using Undergraduate Student Pedagogy Advocates
利用本科生教育学倡导者创建支持自主的学习环境
  • 批准号:
    2236118
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CUE-T: Broadening Participation in Computing via Active Learning Strategies in Multi-Institution Online Synchronous Learning Environments
协作研究:CUE-T:通过多机构在线同步学习环境中的主动学习策略扩大计算参与
  • 批准号:
    2246008
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
EAGER: Co-Designing a Cognitive Teaching Assistant to Support Evidence-Based Instruction in Open-Ended Learning Environments
EAGER:共同设计认知助教,支持开放式学习环境中的循证教学
  • 批准号:
    2327708
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
Activating stories of success to enable scale-up of responsive feeding in early learning and child care environments
激活成功故事,以扩大早期学习和儿童保育环境中的响应性喂养
  • 批准号:
    480799
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Miscellaneous Programs
Influence of Color in Japanese Learning Environments Including Elementary, Junior High, High School, and University
色彩对日本小学、初中、高中、大学学习环境的影响
  • 批准号:
    23K02717
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Federated Learning Infrastructure for Collaborative Machine Learning on Heterogeneous Environments
用于异构环境下协作机器学习的联邦学习基础设施
  • 批准号:
    22KJ2289
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了