SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery

SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)

基本信息

项目摘要

Opioid use disorder and addiction are now characterized as a nationwide “opioid epidemic,” with overdoses now the leading cause of injury deaths in the United States. While opioid overdose deaths have increased greatly over the past two decades as compared to other chronic diseases (e.g., heart disease) the development of remote monitoring and management tools and techniques for opioid cravings, recovery, and relapse have not kept pace. There is a critical need to design therapy programs that are discreet, accessible, connected, and personalized by supporting those recovering from Opioid Use Disorder (OUD), beyond conventional therapies. This project develops intelligent Pervasive Augmented reaLity therapies (iPAL) - a technology-enabled OUD intervention that aims to help OUD sufferers manage their cravings to reduce their risk for relapse or overdose. iPAL integrates complementary psychotherapies (cognitive behavioral therapy and heart rate variability biofeedback) with immersive technologies (augmented and mixed reality) to offer convenience, discretion in use, in the moment/real-time through personalized strategies. This work is poised to revolutionize how individuals learn, discover, create, and heal in the broader context of developing treatment strategies for those with OUD. The immediate benefit of the developed system will be iPAL, an appliance for helping those with OUD to experience a better quality of life. The proposed framework has translational potential beyond OUD: serving as a mental health support aid for those suffering from other forms of addiction (e.g., smoking and alcohol), suicidal ideation, post-traumatic stress disorder, and/or severe depression. This work is especially relevant to rural areas where people with OUD often have poor access to services. Even when services are available, stigma is a significant barrier to accessing these traditional addiction services.The novel and potentially transformative nature of this project lies in transcending the foundational theoretical understanding and identification of key technological (e.g., augmented, mixed, and virtual reality), neurophysiological (e.g., functional brain activity, heart rate variability, electrodermal activity), and affective determinants (e.g., positive or negative valence and arousal) of immersion that predict OUD patient experience and subsequently intent (e.g., manage cravings). The team focuses on unobtrusive means (e.g., mobile and wearable technology) to collect real-time physiological parameters to discreetly deliver personalized and interactive evidence-based complementary OUD psychotherapies utilizing Artificial Intelligence (AI) algorithms and immersive technology formats. A series of integrated research efforts is undertaken to advance spatial and affective computing science (technology outcomes) and behavioral science (health outcomes) that will contribute to the following intellectual merits: (1) developing an intelligent system to deliver personalized and interactive evidence-based psychotherapies, (2) fundamentally measuring, modeling, and comparing user engagement using neural signatures and physiological and subjective responses across the reality-virtuality continuum, (3) contributing to augmenting traditional OUD interventions using smart and connected immersive reality technologies, (4) determining the level of immersion most suitable as a mobile and real-time personalized therapeutic intervention, and (5) advancing understanding regarding the role that pervasive and personalized immersive technology plays in at-risk populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
阿片类药物使用障碍和成瘾现在被描述为一种全国性的“阿片类药物流行”,过量使用现在是美国伤害死亡的主要原因。尽管与其他慢性疾病(如心脏病)相比,阿片类药物过量死亡在过去二十年中大幅增加,但阿片类药物渴求、康复和复发的远程监测和管理工具和技术的发展没有跟上步伐。迫切需要设计谨慎、可访问、连接和个性化的治疗计划,支持那些从阿片使用障碍(OUD)中恢复的人,而不是传统的治疗方法。该项目开发智能普适增强现实疗法(IPAL)-一种技术支持的OUD干预,旨在帮助OUD患者管理他们的渴望,以降低他们复发或过量服药的风险。IPAL将互补的心理疗法(认知行为疗法和心率变异性生物反馈)与沉浸式技术(增强现实和混合现实)相结合,通过个性化的策略在瞬间/实时提供方便、谨慎的使用。这项工作准备在为OUD患者制定治疗策略的更广泛的背景下,彻底改变个人如何学习、发现、创造和治疗。开发的系统直接受益的将是IPAL,这是一种帮助OUD患者体验更好生活质量的设备。拟议的框架具有超越OUD的翻译潜力:为那些患有其他形式的成瘾(例如,吸烟和酒精)、有自杀意念、创伤后应激障碍和/或严重抑郁症的人提供精神健康支持。这项工作与农村地区尤其相关,在农村地区,患有OUD的人往往很难获得服务。这个项目的新颖和潜在的变革性在于超越了对关键技术(例如,增强的、混合的和虚拟现实的)、神经生理学(例如,脑功能活动、心率变异性、皮肤电活动)和沉浸的情感决定因素(例如,正或负价和唤醒)的基础理论理解和识别,这些因素预测了患者的体验和随后的意图(例如,管理渴望)。该团队专注于不引人注目的手段(例如,移动和可穿戴技术)来收集实时生理参数,以利用人工智能(AI)算法和沉浸式技术格式谨慎地提供个性化和交互式的循证补充心理疗法。开展了一系列综合研究工作,以推进空间和情感计算科学(技术成果)和行为科学(健康成果),这将有助于以下智力优势:(1)开发智能系统以提供个性化和交互式的循证心理治疗,(2)使用跨现实-虚拟连续体的神经签名和生理和主观反应从根本上测量、建模和比较用户参与度,(3)使用智能和连接的沉浸式现实技术有助于增强传统的OUD干预,(4)确定最适合作为移动和实时个性化治疗干预的沉浸水平,以及(5)促进对普及和个性化身临其境技术在高危人群中所起作用的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjana Mehta其他文献

On a regularity-conjecture of generalized binomial edge ideals
  • DOI:
    10.1007/s13348-024-00452-w
  • 发表时间:
    2024-08-20
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    J. Anuvinda;Ranjana Mehta;Kamalesh Saha
  • 通讯作者:
    Kamalesh Saha
Unboundedness of the first Betti number and the last Betti number of numerical semigroups generated by concatenation

Ranjana Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjana Mehta', 18)}}的其他基金

B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2349138
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Cooperative Agreement
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2033592
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Cooperative Agreement
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    1900704
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
RAPID: Human-Robotic Interactions During Harvey Recovery Operations
RAPID:哈维恢复操作期间的人机交互
  • 批准号:
    1760479
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

内源性逆转录病毒MER65-int调控人类胎 盘发育与子宫内膜重塑的功能研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
燃油胶轮车典型尾气污染物时空演化规律与碳基整型吸除剂多效净化研究
  • 批准号:
    52304243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
  • 批准号:
    32370939
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
  • 批准号:
    LQ22H160033
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
  • 批准号:
    81903680
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
  • 批准号:
    31800624
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
复杂工况下运输机群三维装箱问题关键技术研究
  • 批准号:
    61403204
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于可逆整型变换与特征分析的图像压缩方法研究
  • 批准号:
    61302063
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
多级孔-规整型-金属氧化物和纳米碳管复合物的制备及其在催化中的应用
  • 批准号:
    21376170
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
  • 批准号:
    81371698
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2313481
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10573225
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
  • 批准号:
    10392429
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
  • 批准号:
    2124270
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014554
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
  • 批准号:
    2014552
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2019389
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013651
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
  • 批准号:
    2014431
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了