Conference: International Conference on L-functions and Automorphic Forms

会议:L-函数和自同构国际会议

基本信息

  • 批准号:
    2349888
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This award provides support for the conference entitled "International Conference on L-functions and Automorphic Forms'', which will take place at Vanderbilt University in Nashville, Tennessee on May 13--16 2024. This is part of an annual series hosted by Vanderbilt, known as the Shanks conference series. The main theme will be on new developments and recent interactions between the areas indicated in the title. The interplay between automorphic forms and L-functions has a long and very fruitful history in number theory, and bridging both fields is still a very active area of research. This conference is oriented at establishing and furthering dialogue on new developments at the boundary of these areas. This will foster collaboration between researchers working in these fields. One beautiful feature of modern number theory is that many problems of broad interest, in areas of study as diverse as arithmetic geometry to mathematical physics, can be solved in an essentially optimal way if the natural extension of the Riemann hypothesis holds for L-functions associated to automorphic representations. Although many generalizations and applications around L-functions have have already been worked out, there are still various fundamental open problems among them to tackle, including bounds for and the value distribution of L-functions. The former is related to the pursuit of so-called sub-convexity bounds for L-functions. The latter is related to the Birch and Swinnterton-Dyer conjecture (another “Millenium problem” posed by the Clay Mathematics institute). These pursuits are closely connected with the Langlands program, a “grand unifying theory” relating automorphic forms. Further details can be found on the conference website https://my.vanderbilt.edu/shanksseries/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为名为“l函数和自同构形式国际会议”的会议提供支持,该会议将于2024年5月13日至16日在田纳西州纳什维尔的范德比尔特大学举行。这是由范德比尔特大学主办的年度系列会议的一部分,被称为香克斯系列会议。主题将是标题所示领域之间的新发展和最近的相互作用。自同构形式和l函数之间的相互作用在数论中有着悠久而富有成果的历史,连接这两个领域仍然是一个非常活跃的研究领域。这次会议的目的是就这些地区边界的新发展建立和促进对话。这将促进在这些领域工作的研究者之间的合作。现代数论的一个美丽特征是,如果黎曼假设的自然扩展适用于与自同构表示相关的l函数,那么在从算术几何到数学物理等不同研究领域中,许多广泛感兴趣的问题都可以以本质上最优的方式解决。虽然关于l -函数的许多推广和应用已经得到了解决,但其中仍有许多基本的开放性问题需要解决,包括l -函数的界和值分布。前者与追求所谓的l函数的次凸界有关。后者与Birch和Swinnterton-Dyer猜想(克莱数学研究所提出的另一个“千年问题”)有关。这些追求与朗兰兹纲领密切相关,朗兰兹纲领是一个关于自同构形式的“大统一理论”。更多的细节可以在会议网站https://my.vanderbilt.edu/shanksseries/.This上找到,该奖项反映了美国国家科学基金会的法定使命,并通过基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larry Rolen其他文献

Zeta-polynomials for modular form periods
模形式周期的 Zeta 多项式
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Ono;Larry Rolen;Florian Sprung
  • 通讯作者:
    Florian Sprung
Central $L$-values of newforms and local polynomials
新形式和局部多项式的中心 $L$ 值
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Males;Andreas Mono;Larry Rolen;Ian Wagner
  • 通讯作者:
    Ian Wagner
Pair correlation for Dedekind zeta functions of abelian extensions
阿贝尔扩张的 Dedekind zeta 函数的配对相关
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David de Laat;Larry Rolen;Z. Tripp;Ian Wagner
  • 通讯作者:
    Ian Wagner
Correction to: A note on Schwartz functions and modular forms
  • DOI:
    10.1007/s00013-020-01546-0
  • 发表时间:
    2021-01-06
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Larry Rolen;Ian Wagner
  • 通讯作者:
    Ian Wagner
Central L ‐values of elliptic curves and local polynomials
椭圆曲线和局部多项式的中心 L 值

Larry Rolen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larry Rolen', 18)}}的其他基金

Conference on "100 Years of Mock Theta Functions; New Directions in Partitions, Modular Forms, and Mock Modular Forms"
“模拟 Theta 函数 100 年;分区、模块化形式和模拟模块化形式的新方向”会议
  • 批准号:
    1951393
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似海外基金

Research on the changing functions of international institutions for preventing and resolving water conflicts
预防和解决水冲突国际机构职能转变研究
  • 批准号:
    21K13198
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The principle of subsidiarity for international institutions: its significance and functions
国际机构辅助性原则:意义和作用
  • 批准号:
    21K01158
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical international joint research on elucidation of leadership functions in interprofessional collaboration
阐明跨专业合作中领导职能的实证国际联合研究
  • 批准号:
    21K10309
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Practical research on international "laboratory functions" in Asian performing arts creation
亚洲表演艺术创作中的国际“实验室功能”实践研究
  • 批准号:
    20H00009
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
International Conference on Interpolation in Spaces of Analytic Functions at CIRM
CIRM 解析函数空间插值国际会议
  • 批准号:
    1936503
  • 财政年份:
    2019
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
International Comparative Study on the Background and Structure of Cultural Policies in the Countries with Decentralized Capital Functions
资本功能分散国家文化政策背景与结构的国际比较研究
  • 批准号:
    18K00216
  • 财政年份:
    2018
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new therapeutic strategy for L-DOPA-induced dyskinesia by targeting striosome functions(Fostering Joint International Research)
通过针对纹状体功能开发针对 L-DOPA 引起的运动障碍的新治疗策略(促进国际联合研究)
  • 批准号:
    16KK0182
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Construction of Galaxy Cluster Mass Functions from the Large-scale X-ray Survey(Fostering Joint International Research)
从大规模X射线巡天构建星系团质量函数(促进国际联合研究)
  • 批准号:
    16KK0101
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Theoretical Study on Probabilistic Slow Feature Analysis and Its Applications to Recognition Functions(Fostering Joint International Research)
概率慢特征分析及其在识别功能中的应用的理论研究(促进国际联合研究)
  • 批准号:
    15KK0010
  • 财政年份:
    2016
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Research and development of new structural system with multiple functions by(Fostering Joint International Research)
多功能新型结构体系的研究开发(促进国际联合研究)
  • 批准号:
    15KK0220
  • 财政年份:
    2016
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了