Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis

合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用

基本信息

  • 批准号:
    2349884
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Eranda Nikolla of the University of Michigan and Professor Will Medlin of the University of Colorado Boulder are studying new heterogeneous catalysts for the direct synthesis of hydrogen peroxide. Hydrogen peroxide is an important product for numerous applications including clean water and as an efficient oxidant in chemicals manufacturing. However, it is currently produced at industrial scale via an indirect process that involves reactions of organic chemicals and requires large scales to be economical. For distributed manufacturing, it is desirable to develop a “greener” process that directly reacts hydrogen with oxygen. However, new catalysts are needed to accelerate the rate of hydrogen peroxide synthesis and avoid side reactions that lead to complete hydrogen oxidation to water. Recent work has suggested that the application of certain organic coatings to common supported metal catalysts can improve hydrogen peroxide synthesis yields, however the way these improve performance is not understood. Professors Nikolla and Medlin and their teams will systematically vary the properties of the organic-metal interface to identify molecular features associated with high hydrogen peroxide yields. They will also conduct reaction kinetic studies to understand how interactions between the reactants and organic coatings specifically lead to enhanced rates. The research will be carried out by a multi-institutional team that includes collaboration with international and national laboratory partners. The educational component of the project will include training and exchange programs for graduate and undergraduate students and development of new online educational tools related to the research problem.Under this award, Professors Eranda Nikolla of the University of Michigan and Will Medlin of the University of Colorado Boulder are studying how the near-surface environment influences direct hydrogen peroxide synthesis on supported metal catalysts. Organic ligands are widely used in the synthesis of metal nanocrystals that can be employed as well-defined catalysts. While in many cases it is desirable to remove the ligands, in other instances the retention of ligands can lead to desirable catalyst performance. One important example in which ligand effects have been found to yield major selectivity improvements is the direct synthesis of hydrogen peroxide from H2 and O2 over Pd catalysts. While there have been some indications that the ligands function via (i) blocking of contiguous surface sites responsible for O2 activation and (ii) promotion of proton shuttling to adsorbed O2, the elementary-step mechanisms by which the coatings enhance selectivity in H2O2 direct synthesis are poorly understood. To develop structure-reactivity relations for hydrogen peroxide synthesis, Professors Nikolla and Medlin will systematically vary (a) the structure and density of ligands, (b) the metal nanoparticle size, shape, and composition, and (c) the solvent properties. The prepared materials will be characterized in depth and utilized in kinetic studies to understand the origins of selective catalysis. The project will involve collaborative efforts in nanoparticle synthesis, characterization of ligand-protected catalysts, reaction kinetic studies, and computational studies of chemistry at organic-modified metal surfaces. Although the project will emphasize the direct synthesis of hydrogen peroxide, the principles developed here can be extrapolated to diverse catalytic reactions, particularly since the elementary steps in direct synthesis and its undesired side reactions are broadly important in many chemistries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,密歇根大学的Eranda Nikolla教授和科罗拉多大学博尔德分校的Will Medlin教授正在研究用于直接合成过氧化氢的新型多相催化剂。过氧化氢是一种重要的产品,用于许多应用,包括清洁水和作为化学品制造中的高效氧化剂。然而,它目前是通过间接过程在工业规模上生产的,涉及有机化学品的反应,需要大规模才能经济。对于分布式制造,开发一种“更环保”的过程是可取的,这种过程可以直接使氢与氧发生反应。然而,需要新的催化剂来加快过氧化氢的合成速度,并避免导致氢完全氧化成水的副反应。最近的研究表明,将某些有机涂层应用于常见的负载金属催化剂可以提高过氧化氢的合成收率,但是这些提高性能的方式尚不清楚。Nikolla和Medlin教授及其团队将系统地改变有机-金属界面的性质,以确定与高过氧化氢产量相关的分子特征。他们还将进行反应动力学研究,以了解反应物和有机涂层之间的相互作用是如何导致速率提高的。这项研究将由一个多机构团队进行,其中包括与国际和国家实验室伙伴的合作。该项目的教育部分将包括研究生和本科生的培训和交流计划,以及与研究问题相关的新在线教育工具的开发。在这个奖项下,密歇根大学的Eranda Nikolla教授和科罗拉多大学博尔德分校的Will Medlin教授正在研究近表面环境如何影响负载金属催化剂上过氧化氢的直接合成。有机配体广泛应用于金属纳米晶体的合成,是一种性能良好的催化剂。虽然在许多情况下需要去除配体,但在其他情况下,配体的保留可以导致理想的催化剂性能。配体效应已被发现产生重大选择性改进的一个重要例子是在Pd催化剂上由H2和O2直接合成过氧化氢。虽然有一些迹象表明配体的功能是通过(i)阻断负责O2活化的连续表面位点和(ii)促进质子穿梭到被吸附的O2,但涂层提高H2O2直接合成选择性的基本步骤机制尚不清楚。为了发展过氧化氢合成的结构-反应性关系,Nikolla和Medlin教授将系统地改变(a)配体的结构和密度,(b)金属纳米颗粒的大小、形状和组成,以及(c)溶剂性质。制备的材料将被深入表征,并用于动力学研究,以了解选择性催化的起源。该项目将涉及纳米颗粒合成、配体保护催化剂的表征、反应动力学研究和有机修饰金属表面化学的计算研究等方面的合作。虽然该项目将强调过氧化氢的直接合成,但这里开发的原理可以推断到各种催化反应,特别是因为直接合成的基本步骤及其不期望的副反应在许多化学中都很重要。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Will Medlin其他文献

Incorporating ScreenCasts into Chemical Engineering Courses
将 ScreenCast 纳入化学工程课程
  • DOI:
    10.18260/1-2--18130
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. L. D. Grazia;J. Falconer;G. Nicodemus;Will Medlin
  • 通讯作者:
    Will Medlin

Will Medlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Will Medlin', 18)}}的其他基金

Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
  • 批准号:
    2218958
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
  • 批准号:
    2132033
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Catalytic Selectivity Control in Electrochemical Systems using Self-Assembled Monolayers
使用自组装单层膜控制电化学系统中的催化选择性
  • 批准号:
    2004090
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Modification of zeolites with organic ligands for improved separations
用有机配体对沸石进行改性以改善分离
  • 批准号:
    1916738
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    1900183
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Surface Reaction of Oxygenates on Lewis Acidic Metal Oxides
SusChEM:合作研究:路易斯酸性金属氧化物上氧化物的表面反应
  • 批准号:
    1705500
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SusChEM: Surface Active Site Design for Selective Deoxygenation
SusChEM:用于选择性脱氧的表面活性位点设计
  • 批准号:
    1464979
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436862
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Surface-level investigations of adsorbate-adsorbate interactions on thiolate-modified surfaces
硫醇盐改性表面吸附质-吸附质相互作用的表面研究
  • 批准号:
    1160040
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Understanding and Controlling Reactivity of Functionalized Alcohols on Metal Surfaces
了解和控制金属表面官能化醇的反应性
  • 批准号:
    1149752
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了