LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
基本信息
- 批准号:2400460
- 负责人:
- 金额:$ 10.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). In mathematics, a finite graph refers to a finite collection of points with line segments, called edges, connecting them. For example, a triangle is a graph with three points and three edges, while the letter "H" could be viewed as a graph with 6 points and 5 edges. Despite the simplicity of this description, graphs have proven themselves to be one of the most important tools in the modern mathematical toolkit, being critical in applications to, for instance, large networks and robotics. The projects of the current award seek to further the state of the art in the study of graphs in key ways related with the two aforementioned applications. In particular, one project seeks to understand the sizes of large independent (without a single edge connecting them) collections of points within the graph, whereas another relates to ways in which large networks expand over time. The final project considers scenarios of a collection of robots randomly moving on the graph as if it were a track, while not being allowed to collide, and showing the extremely interesting behavior that can result from this. In addition to these research concerns, this grant will be used in furthering educational standards for students of various backgrounds and skill levels. This includes attaching a "Growing Up in Science" series to existing student seminars, supplying funding for the local AWM chapter, using funds to send students to national conferences which specialize in diversity in research, and funding for summer research opportunities.This project builds on previous work, which developed a framework for studying families of highly symmetric graphs using combinatorial categories. This work lends itself to a variety of natural conjectures, including one that would imply certain regular behaviors in the independence numbers of graphs in these families. These conjectures comprise the first proposed project. The second project applies a similar categorical framework to families of discrete groups, including automorphism groups of free groups and integral special linear groups. It has been observed that various group theoretic properties, such as Kazhdan's property (T), seem to behave stably in these families. It is our belief that this framework can illuminate and expand upon our understanding of groups with property (T) and thereby our understanding of expander graphs. Finally, recent work has presented a model for random braiding in the configuration space of a tree. This model has an associated covariance matrix, which has been conjectured to uniquely identify the tree; a feature which the topology of the configuration space lacks. Furthermore, the PI has also devised a random model for graph configuration spaces that may be used to detect the presence of exotic torsions in homology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。在数学中,有限图指的是一个有限的点的集合,线段称为边,连接它们。例如,三角形是一个有三个点和三条边的图形,而字母“H”可以被视为一个有6个点和5条边的图形。尽管这种描述很简单,但图已经被证明是现代数学工具包中最重要的工具之一,在大型网络和机器人等应用中至关重要。当前奖项的项目旨在以与上述两个应用相关的关键方式进一步发展图形研究的最新水平。特别是,一个项目试图了解图中大型独立(没有一条边连接它们)点集合的大小,而另一个项目则涉及大型网络随时间扩展的方式。最后一个项目考虑了一组机器人在图上随机移动的场景,就好像它是一个轨道,同时不允许碰撞,并显示了由此产生的非常有趣的行为。除了这些研究问题,这笔赠款将用于促进各种背景和技能水平的学生的教育标准。这包括附加一个“在科学中成长”系列现有的学生研讨会,提供资金的地方AWM章,使用资金送学生参加全国会议,专门在研究的多样性,并资助夏季的研究机会。这个项目建立在以前的工作,开发了一个框架,研究家庭的高度对称图使用组合类别。这项工作本身适合于各种各样的自然结构,包括一个将意味着在这些家庭中的图的独立数的某些规则的行为。这些设备构成第一个拟议项目。第二个项目将类似的范畴框架应用于离散群的族,包括自由群和积分特殊线性群的自同构群。已经观察到,各种群论性质,如Kazhdan性质(T),似乎在这些家族中表现稳定。我们相信,这个框架可以阐明和扩展我们对具有性质(T)的群的理解,从而我们对扩展图的理解。最后,最近的工作提出了一个模型的随机编织的配置空间的树。该模型有一个相关的协方差矩阵,它已被证明是唯一识别的树,配置空间的拓扑结构缺乏的功能。此外,PI还设计了一个图配置空间的随机模型,可用于检测同源性中奇异扭转的存在。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Ramos其他文献
Independence numbers in certain families of highly symmetric graphs
某些高度对称图族中的独立数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Guan;Eric Ramos - 通讯作者:
Eric Ramos
An application of the theory of FI-algebras to graph configuration spaces
FI 代数理论在图配置空间中的应用
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Eric Ramos - 通讯作者:
Eric Ramos
The Alexander and Jones Polynomials Through Representations of Rook Algebras
通过鲁克代数表示的亚历山大和琼斯多项式
- DOI:
10.1142/s0218216512501143 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Bigelow;Eric Ramos;Ren Yi - 通讯作者:
Ren Yi
Configuration Spaces of Graphs with Certain Permitted Collisions
具有某些允许碰撞的图的配置空间
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
Eric Ramos - 通讯作者:
Eric Ramos
Three-Selmer groups for elliptic curves with 3-torsion
- DOI:
10.1007/s11139-012-9455-x - 发表时间:
2013-03-14 - 期刊:
- 影响因子:0.700
- 作者:
Tony Feng;Kevin James;Carolyn Kim;Eric Ramos;Catherine Trentacoste;Hui Xue - 通讯作者:
Hui Xue
Eric Ramos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Ramos', 18)}}的其他基金
LEAPS-MPS: The representation theory of combinatorial categories
LEAPS-MPS:组合类别的表示理论
- 批准号:
2137628 - 财政年份:2021
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant
相似国自然基金
时序释放Met/Qct-MPs葡萄糖响应型水凝胶对糖尿病创面微环境调节机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脓毒症血浆中微粒(MPs)对免疫细胞的作用机制 及其免疫抑制的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
中性粒细胞释放CitH3+MPs活化NLRP3炎性小体激活胆汁淤积性肝病肝内凝血活性
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 MPS 方法的燃料熔盐高温氧化与凝固迁徙行为机理研究
- 批准号:24ZR1478500
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于代谢组学的滋水清肝饮干预乳腺癌内分泌治疗相关MPS的多中心临床研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
六价铬和PET-MPs联合暴露诱导大鼠神经毒性铁死亡的机制研究
- 批准号:2024Y9704
- 批准年份:2024
- 资助金额:10.0 万元
- 项目类别:省市级项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
- 批准号:
23K26472 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
- 批准号:
24K18340 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
- 批准号:
2425308 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
- 批准号:
2316289 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant
LEAPS-MPS: Light Tunable Redox-Active Hybrid Nanomaterial with Ultrahigh Catalytic Activity for Colorimetric Applications
LEAPS-MPS:具有超高催化活性的光可调氧化还原活性混合纳米材料,适用于比色应用
- 批准号:
2316793 - 财政年份:2024
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Fellowship Award
LEAPS-MPS: Cooperative Transformations of N-Heterocycles with Heterometallic Complexes
LEAPS-MPS:N-杂环与异金属配合物的协同转化
- 批准号:
2316582 - 财政年份:2023
- 资助金额:
$ 10.54万 - 项目类别:
Standard Grant