Splicing Summation Formulae and Triple Product L-Functions
拼接求和公式和三重积 L 函数
基本信息
- 批准号:2400550
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award concerns the Langlands program which has been described as a grand unification theory within mathematics. In some sense the atoms of the theory are automorphic representations. The Langlands functoriality conjecture predicts that a collection of natural correspondences preserve these atoms. To even formulate this conjecture precisely, mathematical subjects as diverse as number theory, representation theory, harmonic analysis, algebraic geometry, and mathematical physics are required. In turn, work on the conjecture has enriched these subjects, and in some cases completely reshaped them. One particularly important example of a correspondence that should preserve automorphic representations is the automorphic tensor product. It has been known for some time that in order to establish this particular case of Langlands functoriality it suffices to prove that certain functions known as L-functions are analytically well-behaved. More recently, Braverman and Kazhdan, Ngo, Lafforgue and Sakellaridis have explained that the expected properties of these L-functions would follow if one could obtain certain generalized Poisson summation formulae. The PI has isolated a particular family of known Poisson summation formulae and proposes to splice them together to obtain the Poisson summation formulae relevant for establishing the automorphic tensor product.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项涉及朗兰兹计划,该计划被描述为数学中的大统一理论。在某种意义上,该理论的原子是自同构的表示。朗兰兹功能猜想预言,自然对应关系的集合保存了这些原子。为了准确地表述这一猜想,需要各种数学学科,如数论、表示论、调和分析、代数几何和数学物理。反过来,对猜想的研究丰富了这些主题,在某些情况下还完全重塑了它们。保持自同构表示的对应的一个特别重要的例子是自同构张量积。众所周知,为了建立朗兰兹函数的这种特殊情况,只需证明某些被称为L函数的函数在分析上是良好的就足够了。最近,Braverman和Kazhdan,Ngo,Lforguge和Sakellaridis解释说,如果能得到某些广义Poisson求和公式,这些L函数的预期性质就会遵循。PI分离了一个特定的已知泊松求和公式家族,并建议将它们拼接在一起,以获得与建立自同构张量积相关的泊松求和公式。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayce Getz其他文献
Jayce Getz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayce Getz', 18)}}的其他基金
Representations of p-adic Groups and the Local Langlands Correspondence
p-adic 群的表示和当地朗兰通讯
- 批准号:
2055230 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Summation Formulae and Triple Product L-functions in Higher Rank
高阶求和公式和三重积 L 函数
- 批准号:
1901883 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Langlands Functoriality in Nonsolvable and Relative Settings
不可解和相对设置中的朗兰兹函数性
- 批准号:
1405708 - 财政年份:2014
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似海外基金
Functional Underpinnings of Summation-By-Parts Finite Differences
有限差分部分求和的函数基础
- 批准号:
EP/V002929/1 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Research Grant
Optimization of Summation-by-Parts Operators for Minimum Solution Error
优化分部求和算子以获得最小解误差
- 批准号:
556824-2020 - 财政年份:2020
- 资助金额:
$ 22万 - 项目类别:
University Undergraduate Student Research Awards
Influence of spatial summation on the illusory movement induced by tendon vibrations
空间求和对肌腱振动引起的幻觉运动的影响
- 批准号:
19K20105 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and Investigation of Efficient High-Order Generalized Summation-By-Parts Operators for Computational Fluid Dynamics
计算流体动力学高效高阶广义分部求和算子的开发和研究
- 批准号:
504436-2017 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Comparative Evaluation of Discontinuous-Galerkin and Summation-by-Parts Methods on Unstructured Gr
非结构化网格的间断伽辽金法与分部求和法的比较评价
- 批准号:
540024-2019 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
University Undergraduate Student Research Awards
Summation Formulae and Triple Product L-functions in Higher Rank
高阶求和公式和三重积 L 函数
- 批准号:
1901883 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Development and Investigation of Efficient High-Order Generalized Summation-By-Parts Operators for Computational Fluid Dynamics
计算流体动力学高效高阶广义分部求和算子的开发和研究
- 批准号:
504436-2017 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9792300 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9975922 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Development and Investigation of Efficient High-Order Generalized Summation-By-Parts Operators for Computational Fluid Dynamics
计算流体动力学高效高阶广义分部求和算子的开发和研究
- 批准号:
504436-2017 - 财政年份:2017
- 资助金额:
$ 22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral