Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
基本信息
- 批准号:9975922
- 负责人:
- 金额:$ 90.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAttentionAutomobile DrivingBehaviorBiological ModelsBiophysicsBrainBrain DiseasesBrain regionCellsCerebral cortexCognitionCollaborationsComplexComputer ModelsConflict (Psychology)DataData SetDependenceDiseaseElementsFailureFeedbackFrequenciesFunctional disorderIndividualInterneuronsLasersLeadMacacaMeasuresMediatingModalityModelingMonkeysMusNeuronsNeurosciencesNeurosciences ResearchNoiseOpsinOutputPatternPerceptionPhotic StimulationPlayPrimatesPropertyResearchRetinaRoleSchizophreniaSensoryShapesSpeedStimulusStructureSynapsesSynaptic plasticityTestingTheoretical modelTimeVariantViralVisualWorkanalytical toolarea striataartificial neural networkautism spectrum disorderawakecell typedriving forceexcitatory neuronexperimental groupexperimental studyinhibitory neuroninsightluminancemultiple datasetsneocorticalnetwork modelsneural circuitneurophysiologyoptogeneticspredictive modelingpublic health relevancereceptive fieldrelating to nervous systemresponsesensory stimulusspecies differencetheoriestoolvisual stimulus
项目摘要
Project Summary
Despite the enormous complexity of the brain, it is becoming increasingly apparent that structures like the
cerebral cortex are modular, relying on a set of canonical computations that occur across brain regions and
modalities to mediate perception, cognition and behavior. One important example of a canonical computation
is the summation of various driving, contextual, and modulatory neuronal inputs to yield spiking output. The
question of how cortical networks integrate these inputs and transform them into spiking outputs of individual
neurons is of central importance to neuroscience. A significant challenge to understanding these computations
is that each neuron is embedded within a larger circuit of neurons, each modulating one another’s activity. So,
understanding how a particular neuron responds to input necessarily involves understanding the larger circuit.
Recent optogenetic studies have found different patterns of input summation in mouse vs. monkey V1.
Recently developed theoretical models have produced specific predictions about the differences in network
circuitry that can lead to differences in summation, and predict how summation non-linearities depend on
inputs to the network. The proposed research will test these predictions and seek to understand these circuit
computations using a combination of theoretical work and optogenetic modulation of circuits in mouse and
monkey. Aim 1: Varying E and I optogenetic stimulation and visual contrast independently to measure
spike response summation to multiple inputs. In this Aim, theoretical models of input summation across
varying cortical circuit regimes will be developed, and recently developed optogenetic tools will be used in
awake mouse and monkey V1 to test predictions generated by these models and identify the corresponding
regimes. The optogenetic tools include a new viral strategy that directs expression of different opsins to
inhibitory vs. excitatory neocortical neurons in the macaque. Simultaneous and independent activation of E and
I and the visual stimulus, all within this theoretical framework, will enable us to test whether observed
differences in summation properties reflect fundamental species differences or reflect a common computation
operating in different parameter regimes. Aim 2: Determine the circuit elements controlling dynamics of
cortical network responses using dynamic optogenetic stimulation. In this Aim, experiments using
dynamic optogenetic and visual stimulation patterns and theoretical analysis of the models with dynamic inputs
will be used to elucidate the temporal dynamics of summation. Aim 3: Determine if different inhibitory
subclasses control different aspects of input integration. Different inhibitory subclasses will be stimulated
optogenetically to decipher their respective roles in input summation. Taken together, these Aims will help
define the roles played by excitatory and inhibitory neurons in mediating summation of neuronal inputs to yield
spiking output. This information will be critical for understanding brain disorders associated with failures in
perception and attention, as is seen with autism, schizophrenia, and Alzheimer’s disease.
项目摘要
尽管大脑极其复杂,但越来越明显的是,
大脑皮层是模块化的,依赖于跨大脑区域发生的一组规范计算,
调节感知、认知和行为的方式。规范计算的一个重要例子
是产生尖峰输出的各种驱动性、情境性和调节性神经元输入的总和。
皮质网络如何整合这些输入并将其转换为个体的尖峰输出的问题
神经元对神经科学至关重要。理解这些计算的一个重大挑战是
每一个神经元都嵌入在一个更大的神经元回路中,每一个神经元都调节着另一个神经元的活动。所以,
理解一个特定的神经元如何对输入作出反应必然涉及理解更大的电路。
最近的光遗传学研究发现小鼠与猴V1中输入总和的不同模式。
最近开发的理论模型已经产生了关于网络差异的具体预测,
电路,可以导致差异的总和,并预测如何总和非线性依赖于
输入到网络。拟议的研究将测试这些预测,并寻求了解这些电路
使用理论工作和小鼠中电路的光遗传学调制的组合进行计算,
目的1:独立地改变E和I光遗传学刺激和视觉对比度以测量
对多个输入的棘波反应求和。在这个目的中,输入求和的理论模型,
将开发不同的皮层回路机制,最近开发的光遗传学工具将用于
唤醒小鼠和猴子V1,以测试这些模型产生的预测,并确定相应的
光遗传学工具包括一种新的病毒策略,该策略指导不同视蛋白的表达,
抑制性与兴奋性新皮层神经元的猕猴。同时和独立激活E和
我和视觉刺激,都在这个理论框架内,将使我们能够测试是否观察到
求和性质的差异反映了基本的物种差异或反映了共同的计算
目标2:确定控制动态的电路元件,
使用动态光遗传学刺激的皮层网络反应。在这个目的中,使用
动态光遗传学和视觉刺激模式及动态输入模型的理论分析
目的3:确定是否不同的抑制剂,
子类控制输入整合的不同方面。不同的抑制子类将被刺激
光遗传学破译各自的作用,在输入求和。总的来说,这些目标将有助于
定义兴奋性和抑制性神经元在介导神经元输入的总和以产生
尖峰输出。这些信息将是至关重要的理解与失败的大脑疾病,
感知和注意力,就像自闭症、精神分裂症和阿尔茨海默病一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Brunel其他文献
Nicolas Brunel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Brunel', 18)}}的其他基金
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
9814049 - 财政年份:2019
- 资助金额:
$ 90.84万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10155611 - 财政年份:2019
- 资助金额:
$ 90.84万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10614484 - 财政年份:2019
- 资助金额:
$ 90.84万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
9976609 - 财政年份:2019
- 资助金额:
$ 90.84万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10397037 - 财政年份:2019
- 资助金额:
$ 90.84万 - 项目类别:
Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
- 批准号:
10321250 - 财政年份:2018
- 资助金额:
$ 90.84万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9792300 - 财政年份:2018
- 资助金额:
$ 90.84万 - 项目类别:
Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
- 批准号:
10083242 - 财政年份:2018
- 资助金额:
$ 90.84万 - 项目类别:
Learning spatio-temporal statistics from the environment in recurrent networks
从循环网络中的环境中学习时空统计数据
- 批准号:
9170047 - 财政年份:2016
- 资助金额:
$ 90.84万 - 项目类别: