Self-Calibration of Accelerometer Arrays (SCARS)

加速度计阵列的自校准 (SCARS)

基本信息

项目摘要

An inertial measurement unit (IMU) determines the relative motion of a body in the form of its transversal acceleration and its angular velocity. Conventionally, an IMU comprises three accelerometers and three gyroscopes. In contrast to this, a gyroscope-free inertial measurement unit (GF-IMU) detects the relative motion based on acceleration measurements only. Thereby, multiple transducers attached at distinct locations within the body jointly form an accelerometer array. To accurately estimate the relative motion, the sensor poses, i.e., their positions and orientations, must be known precisely. However, those are often only available with an insufficient accuracy. Hence, they are commonly reconstructed by calibration. Current state of the art calibration methods determine the geometrical sensor configuration based on a set of motion data and corresponding acceleration measurements. Sophisticated laboratory equipment is thus required to impose a reference motion on the sensor array, which results in additional costs for each produced measurement unit. Moreover, the equipment is mostly not suitable for sensor arrays with large geometrical dimensions, which inhibits a calibration for many applications. The goal of this research project is to create a self-calibration method for accelerometer arrays. Thus, the accelerometer poses are determined using only their own measurements without any external reference. Moreover, the derived method is intended to work on an arbitrary motion, such that it can be applied during the normal operation of the GF-IMU. To achieve these goals we will investigate how to introduce inherent knowledge about the measurement system to a numerical optimization of the sensor poses. The resulting methodology is not specific to accelerometer arrays and thus has the potential to be adopted for other measurement systems.
惯性测量单元(IMU)以物体的横向加速度和角速度的形式来确定物体的相对运动。传统上,一个IMU包括三个加速计和三个陀螺仪。相比之下,无陀螺仪惯性测量单元(GF-IMU)仅基于加速度测量来检测相对运动。因此,安装在身体内不同位置的多个换能器共同形成加速度计阵列。为了准确地估计相对运动,必须精确地知道传感器的姿态,即它们的位置和方向。然而,这些通常只有在不够准确的情况下才能获得。因此,通常通过校准来重建它们。当前最先进的校准方法基于一组运动数据和相应的加速度测量来确定几何传感器的配置。因此,需要复杂的实验室设备来在传感器阵列上施加参考运动,这导致每个生产的测量单位的额外成本。此外,该设备大多不适用于几何尺寸较大的传感器阵列,这阻碍了许多应用的校准。本研究项目的目标是创建一种用于加速度计阵列的自校准方法。因此,加速度计的姿态只使用它们自己的测量来确定,而不需要任何外部参考。此外,导出的方法旨在处理任意运动,从而可以在GF-IMU的正常操作期间应用。为了实现这些目标,我们将研究如何将测量系统的固有知识引入传感器位姿的数值优化。由此产生的方法并不特定于加速度计阵列,因此有可能被其他测量系统采用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Calibration of Accelerometer Arrays
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Yiannos Manoli其他文献

Professor Dr.-Ing. Yiannos Manoli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Yiannos Manoli', 18)}}的其他基金

Implantable System for Long- and Short-Term Active Charge Balancing in Neural Electrical Stimulation
用于神经电刺激中长期和短期主动电荷平衡的植入系统
  • 批准号:
    315129160
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Tracking of Human Motion by Combining Recursive Bayesian Estimation Methods with Fractional Order / Variable Order models
通过将递归贝叶斯估计方法与分数阶/变阶模型相结合来跟踪人体运动
  • 批准号:
    162182751
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematische Beschreibung der Eigenschaften robuster, zeitkontinuierlicher, kaskadierter Sigma-Delta Analog/Digital Wandler unter Berücksichtigung der Interaktion von Nichtidealitäten
考虑非理想相互作用的稳健、连续时间、级联 Σ-Δ 模拟/数字转换器特性的数学描述
  • 批准号:
    166918089
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematische Beschreibung der Eigenschaften zeitkontinuierlicher, kaskadierter A/D-Wandler unter Berücksichtigung der Interaktion von Nichtidealitäten
考虑非理想相互作用的连续时间级联 A/D 转换器特性的数学描述
  • 批准号:
    13737769
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
NeuraPlex - High-density fully-immersible subcortical neural data digitizer based on time-division multiplexing
NeuraPlex - 基于时分复用的高密度完全浸入式皮层下神经数据数字化仪
  • 批准号:
    457287847
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
EnTON – Energy Transfer Optimizing Circuits for Energy Harvesting Applications
EnTON – 用于能量收集应用的能量传输优化电路
  • 批准号:
    461644009
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New calibration standards and methods for radiometry and photometry after phaseout of incandescent lamps
淘汰白炽灯后辐射测量和光度测量的新校准标准和方法
  • 批准号:
    10086156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Neutrino oscillation at T2K and Hyper Kamiokande and development of the Hyper Kamiokande light injection calibration system
T2K 和 Hyper Kamiokande 的中微子振荡以及 Hyper Kamiokande 光注入校准系统的开发
  • 批准号:
    2888846
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Calibration of Raman Spectroscopy for Calcite Saturation State in Marine Biogenic Calcification
合作研究:海洋生物钙化中方解石饱和状态的拉曼光谱校准
  • 批准号:
    2323221
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
  • 批准号:
    2233023
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
POSE: Phase II: Open-Source Precision, High Accuracy and Security Environment (OpenPHASE) For Time Verification, Calibration, and Interoperability
POSE:第二阶段:用于时间验证、校准和互操作性的开源精密、高精度和安全环境 (OpenPHASE)
  • 批准号:
    2303726
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of 3D calibration system in JSNS2 experiment
JSNS2实验中3D标定系统的开发
  • 批准号:
    23K13133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
  • 批准号:
    10061803
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了