CAREER: Advances in Randomization Inference for Causal Effects: Heterogeneity, Sensitivity, and Complexity

职业:因果效应随机推理的进展:异质性、敏感性和复杂性

基本信息

  • 批准号:
    2400961
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Understanding causal effects holds significant importance in various social, biomedical, and industrial studies, as it plays a vital role in decision making and policy formulation. This project aims to create innovative statistical methodologies that provide a more comprehensive understanding of causal effect heterogeneity, a more reliable assessment of the sensitivity of causal conclusions to unmeasured confounding in observational studies, and robust inference for modern complex experiments. The research has the potential to answer questions in such a diverse set of disciplines, as political science, education, and sociology. For instance, the project can help address inquiries regarding the proportion of individuals who benefit from a specific policy to any extent, in addition to the usual average treatment effects. The PI intends to disseminate the research outputs through publications, presentations, and the distribution of open-source software. Additionally, the educational and outreach activities will be systematically integrated to the research agenda, aiming to enhance undergraduate education, spread causality knowledge to the broader audiences, and equip graduate students with the critical skills allowing them to become in-depth researchers and human-centered educators.The Principal Investigator plans to develop new tools that provide a more comprehensive and robust understanding of causal effects in both randomized experiments and observational studies. These tools will be built upon or inspired by the randomization inference, which uses the randomization of treatment assignments as the reasoned basis. The project has three primary objectives. First, the PI will develop inference techniques for the distribution of individual causal effects, which is an important concern in practice, yet difficult to infer due to its unidentifiability from the observed data. Second, the project will deliver new sensitivity analyses that can accommodate extreme hidden confounding in observational studies, which can strengthen the causal conclusions. Third, the PI will develop robust inference methods for complex randomized experiments that go beyond simple randomization or involve peer influence. Finally, the project will provide new computationally efficient algorithms and will create publicly available R software packages that will facilitate the use of these new tools in applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解因果效应在各种社会,生物医学和工业研究中具有重要意义,因为它在决策和政策制定中起着至关重要的作用。该项目旨在创建创新的统计方法,提供对因果效应异质性的更全面的理解,对观察性研究中因果结论对不可测量混杂的敏感性的更可靠的评估,以及对现代复杂实验的稳健推断。这项研究有可能回答政治学、教育学和社会学等多种学科的问题。例如,除了通常的平均治疗效果外,该项目还可以帮助解决有关在任何程度上受益于特定政策的个人比例的问题。PI打算通过出版物、演示和分发开放源码软件来传播研究成果。此外,教育和外联活动将系统地纳入研究议程,旨在加强本科教育,向更广泛的受众传播因果关系知识,并使研究生具备关键技能,使他们成为深入的研究人员和人类-主要研究者计划开发新的工具,提供一个更全面和强大的理解因果关系的影响,随机实验和观察性研究。这些工具将建立在随机化推断的基础上,或受到随机化推断的启发,随机化推断使用治疗分配的随机化作为推理基础。该项目有三个主要目标。首先,PI将为个体因果效应的分布开发推断技术,这在实践中是一个重要的问题,但由于其无法从观察到的数据中识别而难以推断。其次,该项目将提供新的敏感性分析,可以适应观察性研究中的极端隐藏混杂,这可以加强因果关系的结论。第三,PI将为复杂的随机实验开发强大的推理方法,这些实验超出了简单的随机化或涉及同行影响。最后,该项目将提供新的计算效率高的算法,并将创建公开可用的R软件包,这将有助于在应用程序中使用这些新工具。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinran Li其他文献

Experimental Investigation of Jet Flow Fields with Chevron Nozzles
V形喷嘴射流流场的实验研究
ProsDectNet: Bridging the Gap in Prostate Cancer Detection via Transrectal B-mode Ultrasound Imaging
ProsDectNet:通过经直肠 B 型超声成像缩小前列腺癌检测的差距
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sulaiman Vesal;Indrani Bhattacharya;Hassan Jahanandish;Xinran Li;Zachary Kornberg;Steve Zhou;Elijah Sommer;Moonhyung Choi;Richard E. Fan;G. Sonn;M. Rusu
  • 通讯作者:
    M. Rusu
Is a Trustmark and QR Code Enough? The Effect of IoT Security and Privacy Label Information Complexity on Consumer Comprehension and Behavior
信任标记和二维码就足够了吗?
Treatment of severe hypertension in a 14-year-old child: Successful blood pressure control with additive administration of captopril, an angiotensin-converting enzyme inhibitor, in a patient with bilateral renovascular hypertension
14 岁儿童严重高血压的治疗:双侧肾血管性高血压患者加用卡托普利(一种血管紧张素转换酶抑制剂)成功控制血压
Evaluation et amélioration des méthodes de chaînage de données
  • DOI:
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinran Li
  • 通讯作者:
    Xinran Li

Xinran Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinran Li', 18)}}的其他基金

CAREER: Advances in Randomization Inference for Causal Effects: Heterogeneity, Sensitivity, and Complexity
职业:因果效应随机推理的进展:异质性、敏感性和复杂性
  • 批准号:
    2238128
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
  • 批准号:
    2340176
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了