Extremal Combinatorics: Themes and Challenging Problems

极值组合学:主题和挑战性问题

基本信息

  • 批准号:
    2401414
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-15 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Combinatorics is a fundamental area of mathematics. This project mainly concerns the area of graph theory, an active area of combinatorics which has been booming in recent years because of its connection to other areas of mathematics and theoretical computer science. Many graph theory problems also have practical motivations. Most of the world can be represented as large networks consisting of nodes and the connections between certain pairs of them. For example, a social network such as Facebook has over 2 billion users as nodes and friendship relations as connections; a biological network like the brain has over 100 billion neurons as nodes and synapses as connections. Understanding those networks and designing fast algorithms on them provides much practical value, examples include understanding how news spreads in a social network, understanding brain functions or diseases and improving artificial neural networks for machine learning applications. This project considers several fundamental questions in extremal graph theory. The project also provides training opportunities for graduate and undergraduate students.There are multiple techniques the PI plans to use and further develop, including regularity methods such as Szemeredi's regularity lemma and weak regularity lemmas; analytic tools such as graph limits, random processes and entropy methods; and various other combinatorial tools. The first project is related to Szemeredi's regularity lemma, which is an extremely powerful tool in modern graph theory which spurred a dramatic change of how we view and study graphs. It is a major direction of research to study which applications of the regularity lemma have considerably better bounds. The PI will work on several classical questions where the goal is to improve our understanding of the power and limitation of the regularity method through understanding the bounds in various important applications. Another major project is to determine when random constructions using the probabilistic method give optimal or nearly optimal bounds. Several classical topics include Sidorenko's conjecture, Ramsey theory, and related questions in graph limits. The goal is to better understand this general direction through studying several closely related and concrete problems and gain more insight on the connections between these topics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
组合数学是数学的一个基本领域。该项目主要涉及图论领域,这是近年来蓬勃发展的组合学的一个活跃领域,因为它与数学和理论计算机科学的其他领域有关。许多图论问题也有实际的动机。世界上大部分地区都可以表示为由节点和某些节点对之间的连接组成的大型网络。例如,像Facebook这样的社交网络有超过20亿用户作为节点,友谊关系作为连接;像大脑这样的生物网络有超过1000亿个神经元作为节点,突触作为连接。了解这些网络并在其上设计快速算法提供了许多实用价值,例如了解新闻如何在社交网络中传播,了解大脑功能或疾病以及改进人工神经网络用于机器学习应用。该项目考虑极图理论中的几个基本问题。该项目还为研究生和本科生提供培训机会。PI计划使用和进一步开发多种技术,包括正则性方法,如Szemeredi正则性引理和弱正则性引理;分析工具,如图极限,随机过程和熵方法;以及各种其他组合工具。第一个项目与Szemeredi的正则性引理有关,这是现代图论中一个非常强大的工具,它促使我们如何看待和研究图发生了巨大的变化。研究正则性引理的哪些应用具有更好的界是一个重要的研究方向。PI将研究几个经典问题,其目标是通过理解各种重要应用中的边界来提高我们对正则性方法的能力和局限性的理解。另一个主要项目是确定使用概率方法的随机构造何时给出最优或接近最优的界限。几个经典的主题包括Sidorenko的猜想,拉姆齐理论,以及相关的问题,在图的限制。其目的是通过研究几个密切相关的具体问题来更好地理解这一大方向,并对这些主题之间的联系有更深入的了解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Wei其他文献

Lithium-Ion Batteries: Charged by Triboelectric Nanogenerators with Pulsed Output Based on the Enhanced Cycling Stability
锂离子电池:基于增强循环稳定性的脉冲输出摩擦纳米发电机充电
  • DOI:
    10.1021/acsami.7b18736
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Zhang Xiuling;Du Xinyu;Yin Yingying;Li Nian-Wu;Fan Wei;Cao Ran;Xu Weihua;Zhang Chi;Li Congju
  • 通讯作者:
    Li Congju
Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours
城市轨道交通高峰时段协同客流控制的强化学习方法
Investigation of magnetization dynamics damping in Ni80Fe20/Nd-Cu bilayer at room temperature
室温下 Ni80Fe20/Nd-Cu 双层磁化动态阻尼的研究
  • DOI:
    10.1063/1.5006735
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Fan Wei;Fu Qiang;Qian Qian;Chen Qian;Liu Wanling;Zhou Xiaochao;Yuan Honglei;Yue Jinjin;Huang Zhaocong;Jiang Sheng;Kou Zhaoxia;Zhai Ya
  • 通讯作者:
    Zhai Ya
A tidal pump for artificial downwelling: Theory and experiment
用于人工下降流的潮汐泵:理论与实验
  • DOI:
    10.1016/j.oceaneng.2017.12.066
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xiao Canbo;Fan Wei;Qiang Yongfa;Xu Zhenyu;Pan Yiwen;Chen Ying
  • 通讯作者:
    Chen Ying
Experimental investigations on the temperature equilibrium process inside a detonation tube operating in a valveless scheme
无阀爆震管内温度平衡过程的实验研究
  • DOI:
    10.1016/j.actaastro.2020.05.020
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Tan Fengguang;Wang Ke;Wang Zhicheng;Wang Yun;Fan Wei
  • 通讯作者:
    Fan Wei

Fan Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Wei', 18)}}的其他基金

On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    2404167
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
  • 批准号:
    2246641
  • 财政年份:
    2023
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    1953958
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
  • 批准号:
    2418414
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了