On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
基本信息
- 批准号:2404167
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This mathematics research project centers on the area of graph theory, an active area of combinatorics that has made great strides in recent years because of its connection to other areas of mathematics and theoretical computer science. Many tools developed in modern combinatorics, such as the regularity methods, the probabilistic method, and algebraic methods, turn out to be also useful in understanding questions in other areas of mathematics such as number theory and information theory. This project considers several fundamental questions in combinatorics related to graph theory. It is expected that progress on these questions will lead to new methods that will have impact not only in mathematics but also in computer science, with important practical applications.The topics explored in this project are among the central questions in combinatorics. One goal is to improve understanding of the power and limitation of the regularity method through understanding the bounds in several important applications. Another goal is to determine when random constructions using the probabilistic method give optimal or nearly optimal bounds. Several classical topics include Sidorenko's conjecture, Ramsey theory, and Turan numbers of bipartite graphs. The investigator will use and further develop multiple techniques to tackle these problems, including regularity methods such as Szemeredi's regularity lemma and weak regularity lemmas, and analytic tools such as graph limits and random processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数学研究项目集中在图论领域,这是一个活跃的组合学领域,近年来由于与数学和理论计算机科学的其他领域的联系而取得了长足的进步。现代组合学中发展的许多工具,如正则性方法、概率方法和代数方法,在理解其他数学领域的问题,如数论和信息论方面也很有用。这个项目考虑了与图论相关的组合学中的几个基本问题。预计这些问题的进展将导致新的方法,不仅在数学,而且在计算机科学中产生影响,具有重要的实际应用。在这个项目中探索的主题是组合学的中心问题之一。一个目标是通过理解几个重要应用中的边界来提高对正则性方法的能力和局限性的理解。另一个目标是确定使用概率方法的随机构造何时给出最优或接近最优的边界。几个经典的主题包括Sidorenko猜想,Ramsey理论和二分图的Turan数。研究人员将使用并进一步开发多种技术来解决这些问题,包括Szemeredi正则引理和弱正则引理等正则性方法,以及图极限和随机过程等分析工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan Wei其他文献
Lithium-Ion Batteries: Charged by Triboelectric Nanogenerators with Pulsed Output Based on the Enhanced Cycling Stability
锂离子电池:基于增强循环稳定性的脉冲输出摩擦纳米发电机充电
- DOI:
10.1021/acsami.7b18736 - 发表时间:
2018 - 期刊:
- 影响因子:9.5
- 作者:
Zhang Xiuling;Du Xinyu;Yin Yingying;Li Nian-Wu;Fan Wei;Cao Ran;Xu Weihua;Zhang Chi;Li Congju - 通讯作者:
Li Congju
Reinforcement learning approach for coordinated passenger inflow control of urban rail transit in peak hours
城市轨道交通高峰时段协同客流控制的强化学习方法
- DOI:
10.1016/j.trc.2018.01.008 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiang Zhibin;Fan Wei;Gu Jinjing;Fan Wei;Liu Wei;Zhu Bingqin - 通讯作者:
Zhu Bingqin
Investigation of magnetization dynamics damping in Ni80Fe20/Nd-Cu bilayer at room temperature
室温下 Ni80Fe20/Nd-Cu 双层磁化动态阻尼的研究
- DOI:
10.1063/1.5006735 - 发表时间:
2018-01 - 期刊:
- 影响因子:1.6
- 作者:
Fan Wei;Fu Qiang;Qian Qian;Chen Qian;Liu Wanling;Zhou Xiaochao;Yuan Honglei;Yue Jinjin;Huang Zhaocong;Jiang Sheng;Kou Zhaoxia;Zhai Ya - 通讯作者:
Zhai Ya
A tidal pump for artificial downwelling: Theory and experiment
用于人工下降流的潮汐泵:理论与实验
- DOI:
10.1016/j.oceaneng.2017.12.066 - 发表时间:
2018-03 - 期刊:
- 影响因子:5
- 作者:
Xiao Canbo;Fan Wei;Qiang Yongfa;Xu Zhenyu;Pan Yiwen;Chen Ying - 通讯作者:
Chen Ying
Experimental investigations on the temperature equilibrium process inside a detonation tube operating in a valveless scheme
无阀爆震管内温度平衡过程的实验研究
- DOI:
10.1016/j.actaastro.2020.05.020 - 发表时间:
2020-09 - 期刊:
- 影响因子:3.5
- 作者:
Tan Fengguang;Wang Ke;Wang Zhicheng;Wang Yun;Fan Wei - 通讯作者:
Fan Wei
Fan Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan Wei', 18)}}的其他基金
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2401414 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Extremal Combinatorics: Themes and Challenging Problems
极值组合学:主题和挑战性问题
- 批准号:
2246641 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
- 批准号:
1953958 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
- 批准号:
2348884 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Learning Methods and Applications for Real-World Object Detection
现实世界物体检测的学习方法和应用
- 批准号:
23K16896 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




