Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
基本信息
- 批准号:2403409
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As monolithic chips reach their technological and practical limits, the integration of chiplets is emerging as the primary mechanism to continuously scale up processor performance, improve power efficiency, enhance IP reuse at low cost, and expedite time-to-market. This new concept of composable chiplets is particularly appealing to the artificial intelligence (AI) sector, which is in a pressing need to deliver computing chips to support increasingly complex and diverse cognitive algorithms. This project aims to pioneer such a computing system, including new architectural and design automation tools, for massive AI workloads. The envisioned system will benefit various scenarios, ranging from high-performance computing applications to mobile and edge devices. This project also addresses the skill shortage in the semiconductor area, a crucial aspect for reshoring the semiconductor industry. It involves training students in the areas of heterogeneous system design, AI architectures, and design automation. The investigators plan to improve the knowledge base through new curriculum development, engaging undergraduate students in research through Research Experiences for Undergraduates (REU) supplement, and participating in outreach programs customized for K-12 students. In addition, this project will advocate web-based knowledge dissemination including releasing software codes and novel designs. Several workshops and tutorials promoting chiplet-based co-design have been organized by the investigators and will be continued.Distinguished from current practice of 2.5D/3D heterogeneous integration (HI), this project aims to transform the architecture of chiplet-based design through three unique perspectives: Miniaturization to reduce the chiplet size to the minimum (tiny chiplets) for high composability, guided by AI computing cores; Very-large-scale integration to integrate thousands of tiny chiplets to scale up computing power and diversity for big AI applications, offering unprecedented flexibility and efficiency for AI algorithm and system designers; and Reconfiguration on the package to enable adaptation to varying workloads and address thermal and reliability concerns in 2.5D/3D packaging. These innovations will push the limits of architecture and physical design, addressing challenges related to chiplet definition, interconnection, power and thermal integrity, and workload mapping. The objective is to create a suite of design automation tools, streamlining the complete design process of reconfigurable chiplet-based systems for big AI computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着单片芯片达到其技术和实用的极限,芯片集成正在成为不断扩大处理器性能、提高功率效率、以低成本增强IP重用和加快上市时间的主要机制。这种可组合芯片的新概念对人工智能(AI)部门特别有吸引力,该部门迫切需要提供计算芯片,以支持日益复杂和多样化的认知算法。该项目旨在开创这样一种计算系统,包括新的建筑和设计自动化工具,用于大规模人工智能工作负载。设想的系统将使各种场景受益,从高性能计算应用程序到移动和边缘设备。该项目还解决了半导体领域的技能短缺问题,这是半导体行业回流的关键方面。它包括在异类系统设计、人工智能体系结构和设计自动化领域对学生进行培训。研究人员计划通过开发新的课程,通过本科生研究体验(REU)补充材料让本科生参与研究,并参与为K-12学生定制的外展计划,以改善知识基础。此外,该项目将倡导以网络为基础的知识传播,包括发布软件代码和新颖的设计。研究人员已经组织了几个促进基于芯片的协同设计的研讨会和教程,并将继续进行。与当前的2.5D/3D异质集成(HI)实践不同,该项目旨在通过三个独特的角度来改变基于芯片的设计的体系结构:在人工智能计算核心的指导下,将芯片尺寸减小到最小(微小芯片)以实现高可组合性;超大规模集成,以集成数千个微小芯片,以提高大型AI应用的计算能力和多样性,为AI算法和系统设计者提供前所未有的灵活性和效率;并对封装进行重新配置,以适应不同的工作负载,并在2.5D/3D封装中解决散热和可靠性问题。这些创新将突破架构和物理设计的极限,解决与芯片定义、互连、电源和热完整性以及工作负载映射相关的挑战。其目标是创建一套设计自动化工具,简化用于大型人工智能计算的可重新配置的基于芯片的系统的完整设计流程。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Zhang其他文献
耀斑扫过黑子的统计研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Leping Li;Jun Zhang - 通讯作者:
Jun Zhang
Role of shape factor in forming surface electric field basin in RESURF Lateral Power Devices and its optimization design
形状因子在RESURF横向功率器件表面电场盆地形成中的作用及其优化设计
- DOI:
10.1109/jeds.2018.2871505 - 发表时间:
2018 - 期刊:
- 影响因子:2.3
- 作者:
Jun Zhang;Yu Feng Guo;David Z Pan - 通讯作者:
David Z Pan
The genetic susceptibility analysis of TAAR1 rs8192620 to methamphetamine and heroin abuse and its role in impulsivity
TAAR1 rs8192620对甲基苯丙胺和海洛因滥用的遗传易感性分析及其在冲动中的作用
- DOI:
10.1007/s00406-023-01613-x - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
F. Tang;Longtao Yang;Wenhan Yang;Cong Li;Jun Zhang;Jun Liu - 通讯作者:
Jun Liu
Environmental Fate, Analysis Method and Treatment Technology of Bisphenol A: A Review
双酚A的环境归趋、分析方法及处理技术综述
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bo Yang;Jun Zhang - 通讯作者:
Jun Zhang
Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials
利用深度学习网络进行光学手性调谐和衍射手性超材料的操纵
- DOI:
10.1515/nanoph-2020-0194 - 发表时间:
2020-06 - 期刊:
- 影响因子:7.5
- 作者:
Zilong Tao;Jun Zhang;Jie You;Hao Hao;Hao Ouyang;Qiuquan Yan;Shiyin Du;Zeyu Zhao;Qirui Yang;Xin Zheng;Tian Jiang - 通讯作者:
Tian Jiang
Jun Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Zhang', 18)}}的其他基金
Collaborative Research: Understanding Tropical Cyclone Energetics and Intensification in Environmental Vertical Wind Shear
合作研究:了解热带气旋能量学和环境垂直风切变的强化
- 批准号:
2211308 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Regulatory functions of intrinsically disordered electronegative clusters (ENC) in RNA-binding proteins
RNA结合蛋白中本质无序的负电簇(ENC)的调节功能
- 批准号:
2024964 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: EAGER--Effect of Eddy Forcing Induced by Eyewall and Rainband Convection on Tropical Cyclone Rapid Intensification
合作研究:EAGER——眼壁和雨带对流引起的涡强迫对热带气旋快速增强的影响
- 批准号:
1822128 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MRI: Acquisition of Instrumentation on Experimental Studies on Interactions of Unsteady Flows and Dynamical Boundaries
MRI:获取用于非定常流与动态边界相互作用实验研究的仪器
- 批准号:
0821520 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Unified Framework for Large Scale Scientific Computing
大规模科学计算的统一框架
- 批准号:
0727600 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Information Geometry with Application to Model Selection
信息几何在模型选择中的应用
- 批准号:
0631541 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MSPA-MCS: Mathematical and Computational Algorithms for Visualization of Human Brain Neural Pathways
MSPA-MCS:人脑神经通路可视化的数学和计算算法
- 批准号:
0527967 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SOFTWARE: A Software Environment for High Performance Scientific Computing Applications
软件:高性能科学计算应用程序的软件环境
- 批准号:
0234270 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ALGORITHMS: New Concept and Parallel Algorithms for Robust Preconditioning in Large Scale Parallel Matrix Computation
算法:大规模并行矩阵计算中鲁棒预处理的新概念和并行算法
- 批准号:
0202934 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Develop Robust Scalable Linear System Solvers with Scientific, Engineering and Industrial Applications
职业:开发具有科学、工程和工业应用的鲁棒可扩展线性系统求解器
- 批准号:
0092532 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant