CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
基本信息
- 批准号:2339996
- 负责人:
- 金额:$ 71.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
What it is about one fault that causes it to slip suddenly, unleashing catastrophic earthquakes, while another just creeps along steadily or produces smaller, more frequent earthquakes? This is difficult to assess because faults cannot be directly observed at depths where earthquakes start, typically 5 to 15 miles below ground. We must rely instead on indirect measurements made by instruments at the Earth's surface, and computer models representing the fault and how it slips in response to pressures deep in the Earth. Properties of the virtual fault and surrounding rock can be repeatedly adjusted until the model outputs data that closely match real-world observations from seismometers and other instruments. This process is slow and expensive, even when scientists use clever strategies. Dr. Erickson and her group will see whether a new artificial intelligence scheme called a "Physics-Informed Neural Network" (PINN) can learn how to efficiently adjust fault model properties to rapidly fit observational data. They will test their PINN first on data from laboratory fault experiments to see how it performs at estimating the already-known fault properties, and then train it until it learns to do this well. Then they will apply the PINN to data from the Pacific Northwest and Costa Rica, where properties and physics of dangerous offshore faults need to be better understood. In addition to their main project, Erickson's team will lead short courses on modern computer programming, data analysis, and AI methods for community college students, using datasets and techniques from this project.Dr. Erickson and her group will apply a deep learning learning technique called the Physics-Informed Neural Network (PINN) to study fault slip, using synthetic and laboratory data, as well as geodetic and seismic data from the Cascadia and Costa Rica subduction zones. Scientific questions concern how heterogeneous fault friction and material properties in subduction zone settings affect fault zone slip, stress, and pore pressure; and how/whether PINNs can be applied to studies of this kind. PINN-based solutions for slip, stress, and pore pressure will be compared with those from traditional computational methods to verify the PINN-based solutions and assess their computational advantages and limitations. The three thrusts of the project are (1) developing the theoretical and computational framework; (2) verifying, validating, and applying methods to (i) analytical solutions and community code verification exercises, (ii) controlled laboratory fault slip experiments, and (iii) natural faults; and (3) training and mentoring students. This project will support two-week mini research experiences for ten community college students, multidisciplinary training at UO and two other universities for several graduate students, and an international collaboration with scientists from Costa Rica.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
是什么导致一个断层突然滑动,引发灾难性地震,而另一个断层只是稳步前进或产生规模较小、频率更高的地震?这很难评估,因为在地震开始的深处,通常是地下5至15英里处,无法直接观察到断层。取而代之的是,我们必须依靠地球表面仪器进行的间接测量,以及代表断层以及它如何在地球深处的压力下滑动的计算机模型。虚拟断层和围岩的属性可以反复调整,直到模型输出的数据与地震仪和其他仪器的真实观测数据非常接近。即使科学家使用聪明的策略,这个过程也是缓慢和昂贵的。埃里克森博士和她的团队将研究一种名为“物理-知情神经网络”(Pinn)的新人工智能方案能否学习如何有效地调整故障模型的属性,以快速适应观测数据。他们将首先在实验室故障实验的数据上测试他们的Pinn,看看它在估计已知故障属性方面的表现如何,然后对它进行训练,直到它学会做好这一点。然后,他们将把Pinn应用于来自太平洋西北部和哥斯达黎加的数据,在这些地区,危险的近海断层的属性和物理需要更好地了解。除了他们的主要项目,埃里克森的团队还将利用这个项目中的数据集和技术,为社区大学的学生领导关于现代计算机编程、数据分析和人工智能方法的短期课程。埃里克森和她的团队将应用一种名为物理信息神经网络(Pinn)的深度学习技术来研究断层滑动,使用的是合成数据和实验室数据,以及卡斯卡迪亚和哥斯达黎加俯冲带的大地测量和地震数据。科学问题涉及不均匀的断层摩擦和俯冲带背景下的材料性质如何影响断裂带的滑动、应力和孔压;以及PINN如何/是否可以应用于这类研究。将基于Pinn的滑移、应力和孔压的解与传统计算方法的解进行比较,以验证基于Pinn的解,并评估其计算优势和局限性。该项目的三个重点是(1)开发理论和计算框架;(2)验证、验证和应用方法来(I)分析解和社区代码验证练习,(Ii)受控实验室断层滑动实验,和(Iii)自然断层;以及(3)培训和指导学生。该项目将为10名社区大学生提供为期两周的小型研究体验,在密歇根大学和其他两所大学为几名研究生提供多学科培训,以及与哥斯达黎加科学家的国际合作。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Erickson其他文献
Characterization of hydrodynamic properties from free vibration tests of a large-scale bridge model
- DOI:
10.1016/j.jfluidstructs.2021.103368 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Thomas Schumacher;Alaa W. Hameed;Christopher Higgins;Brittany Erickson - 通讯作者:
Brittany Erickson
Brittany Erickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Erickson', 18)}}的其他基金
Collaborative Research: Exploring System-Wide Events on Complex Fault Networks using Fully-Dynamic 3D Earthquake Cycle Simulations
协作研究:使用全动态 3D 地震周期模拟探索复杂故障网络上的系统范围事件
- 批准号:
2053372 - 财政年份:2021
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
- 批准号:
1916992 - 财政年份:2019
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
- 批准号:
1547603 - 财政年份:2016
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
Single-Event and Long-Term Dynamics of Nonplanar Fault Systems
非平面故障系统的单事件和长期动力学
- 批准号:
0948304 - 财政年份:2010
- 资助金额:
$ 71.04万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Fellowship
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Continuing Grant
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 71.04万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 71.04万 - 项目类别:
Standard Grant
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
- 批准号:
23K13326 - 财政年份:2023
- 资助金额:
$ 71.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists