Towards the Realization of the Hot Carrier Solar Cell using Valley Photovoltaics
利用 Valley Photovoltaics 实现热载流子太阳能电池
基本信息
- 批准号:2406002
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The concept of a hot carrier solar cell has long been considered an exciting prospect for the realization of ultra-high efficiency solar cells with the ability to convert more of the sun’s energy to useful power. Hot carriers are photogenerated when photons with energy well above the threshold (or band gap) for absorption in the semiconductor used to produce the solar cell are absorbed. For most materials, the hot carriers then rapidly interact with the material to generate heat. This parasitic thermal energy cannot be converted to useful power and is therefore a major loss process in commercial solar cells. To date, the solar cells used terrestrially are limited to power conversion efficiencies of ~ 30%. If “hot” photogenerated charge carriers were harnessed prior to generating heat, the conversation efficiency of a solar cell has been predicted to exceed 60%. This would significantly reduce system costs and increase the global impact of photovoltaic technology,therefore contributing significantly to sustainable and clean energy sources. This research also creates the potential for a new generation of solar cell technologies, generating new devices and consumer products, as well as having significant implications for future sources of energy. Extracting hot carriers is, however, extremely challenging, and requires significant innovation and the development of novel systems and architectures that effectively decouple heat generation processes. One possible avenue to achieve this goal is via valley photovoltaics, a protocol recently developed by the PI to store the high energy hot carriers through a natural process observed in high mobility transistors in which hot carriers transfer to so-called satellite valleys in the structure of the solar cell absorber. This process slows heat generation and provides the opportunity to remove these carriers before they lose energy and create heat. Despite this success, there are several important fundamental processes to understand before a practical valley photovoltaic solar cell can be realized. In particular although the transfer and storage of hot carriers to the satellite valleys and therefore reduced heat loss has been demonstrated– the ability to remove the carriers and provide useful voltage and current remains problematic due to parasitic barriers to carrier extraction in the proof-of-principle devices developed to date. In thisprogram a comprehensive investigation of III-V heterostructures is proposed encompassing material growth, optical spectroscopy, and device physics such as to deliver a practical hot carrier solar cell. The proposed research will take the important new results demonstrated by the PI tosystematically optimize the device design and operation of a hot carrier solar cell based on, or enhanced by, intervalley scattering. Specifically, material systems and solar cell structures that enhance hot carrier extraction will require novel barrier/selective-contact layers with specific properties. Furthermore, novel architectures will be necessary that not only scatter high energy photocarriers but also sustain large internal electric fields at the operating point of the solar cell,so photogenerated carriers at lower energies can also be harnessed further improving the efficiency of the device.The applied and fundamental nature of this work exposes the graduate and undergraduate students involved in this program to a diverse research activity. This will enable them to develop considerable practical skills while exposing them to the process of materials development andtechnology transfer, an experience unique in graduate research and of significant value to their future careers. The program also provides research opportunities for minority students, including summer research in the group of the PI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热载流子太阳能电池的概念长期以来一直被认为是实现具有将更多太阳能转换为有用功率的能力的超高效率太阳能电池的令人兴奋的前景。当能量远高于用于生产太阳能电池的半导体中的吸收阈值(或带隙)的光子被吸收时,热载流子被光生。对于大多数材料,热载流子然后与材料快速相互作用以产生热量。这种寄生热能不能转化为有用的功率,因此是商业太阳能电池中的主要损失过程。迄今为止,陆地上使用的太阳能电池的功率转换效率仅限于~ 30%。如果在产生热量之前利用“热”光生电荷载流子,则太阳能电池的转换效率预计将超过60%。这将大大降低系统成本,增加光伏技术的全球影响力,从而为可持续和清洁能源做出重大贡献。这项研究还为新一代太阳能电池技术创造了潜力,产生了新的设备和消费产品,并对未来的能源产生了重大影响。 然而,提取热载流子极具挑战性,需要重大创新和开发新的系统和架构,以有效地解耦热生成过程。实现这一目标的一个可能途径是通过谷光电子学,这是PI最近开发的一种协议,通过在高迁移率晶体管中观察到的自然过程来存储高能量热载流子,其中热载流子转移到太阳能电池吸收器结构中的所谓卫星谷。这个过程减缓了热量的产生,并提供了在这些载体失去能量并产生热量之前将其去除的机会。尽管取得了这一成功,但在实现实用的谷光伏太阳能电池之前,还有几个重要的基本过程需要了解。特别地,尽管已经证明了热载流子到卫星谷的转移和存储以及因此减少的热损失,但是由于迄今为止开发的原理验证设备中的载流子提取的寄生势垒,去除载流子并提供有用的电压和电流的能力仍然是有问题的。在这个项目中,提出了一个全面的III-V族异质结构的研究,包括材料生长,光谱学和器件物理学,以提供一个实用的热载流子太阳能电池。拟议的研究将采取重要的新成果证明了PI系统地优化器件的设计和操作的热载流子太阳能电池的基础上,或增强,谷间散射。具体而言,增强热载流子提取的材料系统和太阳能电池结构将需要具有特定特性的新型阻挡/选择性接触层。此外,新的架构将是必要的,不仅散射高能量的光生载流子,而且还维持在太阳能电池的工作点大的内部电场,所以在较低的能量光生载流子也可以被利用,进一步提高设备的效率。这项工作的应用和基础性质暴露在这个程序中的研究生和本科生参与了多样化的研究活动。这将使他们能够发展相当多的实践技能,同时使他们接触到材料开发和技术转让的过程,这是研究生研究中独一无二的经验,对他们未来的职业生涯具有重要价值。该计划还为少数民族学生提供研究机会,包括PI小组的夏季研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Sellers其他文献
Combustion features from short-lived intermittent occupation at a 1300-year-old Coast Salish rock shelter, British Columbia: The microstratigraphic data
不列颠哥伦比亚省 1300 年历史的 Coast Salish 岩石掩体中短暂间歇性居住的燃烧特征:微地层数据
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Toffolo;Morgan Ritchie;Ian Sellers;Jesse Morin;Natasha Lyons;Megan Caldwell;R. Albert;Bryn Letham;F. Berna - 通讯作者:
F. Berna
Bordering on the Supernatural: Merging Animism and the Frontier in Archaeology
接近超自然:万物有灵论与考古学前沿的融合
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Ian Sellers - 通讯作者:
Ian Sellers
Ian Sellers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Sellers', 18)}}的其他基金
Towards the Realization of the Hot Carrier Solar Cell using Valley Photovoltaics
利用 Valley Photovoltaics 实现热载流子太阳能电池
- 批准号:
2118515 - 财政年份:2021
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Type-II hot carrier solar cells: control and manipulation of non-equilibrium carriers using band engineering
II型热载流子太阳能电池:利用能带工程控制和操纵非平衡载流子
- 批准号:
1610062 - 财政年份:2016
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
相似海外基金
EAGER: IMPRESS-U: Hardware-Efficient Realization of UA Cryptographic Standards
EAGER:IMPRESS-U:UA 加密标准的硬件高效实现
- 批准号:
2414083 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
- 批准号:
23K26488 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
- 批准号:
23K10889 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Ultralight and High Strength Materials by Fine Synthesis of Three-Dimensional Polymer Network
三维聚合物网络精细合成实现超轻高强材料
- 批准号:
23H02016 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BRITE Pivot: Accelerating Manufacturing and Realization of Perovskite Micro-Light Emitting Device (Micro-LED) Displays through Data-driven Learning
BRITE Pivot:通过数据驱动学习加速钙钛矿微发光器件 (Micro-LED) 显示器的制造和实现
- 批准号:
2227285 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Development of a growth method CTS films for the realization of next-generation solar cells which are low-cost, non-toxic, and highly-efficient
开发CTS薄膜生长方法,实现低成本、无毒、高效的下一代太阳能电池
- 批准号:
23K13697 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of photo-responsive CO2 concentration systems by using polar gradient-reaction fields afforded by surfactants and photochromic molecules
利用表面活性剂和光致变色分子提供的极性梯度反应场实现光响应二氧化碳浓度系统
- 批准号:
23K13828 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
- 批准号:
23K03916 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issues and formulation of measures for people with lower limb disabilities for the realization of accessible tourism
下肢残疾人实现无障碍旅游的问题及措施制定
- 批准号:
23K11639 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Pre-Processing to Recognize Freely Handwritten Answer Characters to Graded Answer Images
自由手写答案字符识别对分级答案图像预处理的实现
- 批准号:
23K02675 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)