Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
基本信息
- 批准号:2409552
- 负责人:
- 金额:$ 34.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-15 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: The detection of infrared (IR) light underpins modern science, technology, and society in profound ways, permitting the observation of objects and information that are invisible to conventional detectors, imagers, and cameras. However, despite decades of development, current IR semiconductors possess numerous drawbacks that limit their widespread use and the development of critical emerging technologies. This project will investigate completely new light-matter interactions, theoretical and computational approaches, novel polymer semiconductors with tailored electronic structures, and devices to enable optical to electrical transduction of IR light, a fundamentally new capability for organic materials. These materials and devices will satisfy the functional and economic requirements for technologies that can address critical national needs with global societal impacts in climate change, manufacturing, energy, healthcare, information science, consumer applications, future aerospace and defense-wide applications, and many others. New theoretical, synthetic, characterization, and device advances will coalesce with Air Force Research Labs and industry partnerships to produce new materials and devices for technology transfer. Workforce development efforts will focus on multidisciplinary education through co-mentorship, industry and Department of Defense interactions, outreach to underrepresented high school and undergraduate students, and professional development actives for research and leadership training.Technical Description: This project will address grand challenges to revolutionize our understanding of charge photogeneration and emerging solid-state transport phenomena in order to enable optical to electrical transduction of IR light from organic materials. To achieve this, the research team will establish a closed loop between theory, computation, synthesis, spectroscopy, and device fabrication, engineering, and physics. Revolutionary ab initio and time-dependent quantum chemical calculations that incorporate non-adiabatic dynamics will for the first-time provide detailed insight into IR excitations in correlated organic materials with complex excitonic, vibrational, polaronic, and spin properties. Systematic theory-synthesis-spectroscopic approaches will be developed and applied to benchmark these new theoretical approaches and correlate molecular design with emerging functionality and coherent quasiparticle dynamics across multiple spatiotemporal timescales. This will be related to the fundamental electro-optical physics and device performance, enabling new functionality. These new, foundational design principles will be combined with experimentally validated physical structure-property models and data-driven machine learning methods to simulate new polymer structures, rapidly screen materials candidates, improve performance, and create new material libraries. This will create a comprehensive materials genome for conjugated polymers that operate throughout the IR. Thus, this project will enable fundamentally new scientific capabilities and revolutionary performance in organic electronic devices, acting as a core enabler of transformative technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:红外(IR)光的探测以深刻的方式支撑着现代科学,技术和社会,允许观察传统探测器,成像器和相机不可见的物体和信息。然而,尽管经过数十年的发展,目前的红外半导体仍存在许多缺点,限制了其广泛使用和关键新兴技术的发展。该项目将研究全新的光-物质相互作用,理论和计算方法,具有定制电子结构的新型聚合物半导体,以及能够实现红外光光电转换的设备,这是有机材料的一种全新能力。这些材料和设备将满足技术的功能和经济要求,这些技术可以解决关键的国家需求,并在气候变化,制造业,能源,医疗保健,信息科学,消费应用,未来航空航天和国防应用等领域产生全球社会影响。新的理论、合成、表征和设备进展将与空军研究实验室和行业合作伙伴结合,为技术转让生产新材料和设备。劳动力发展工作将通过共同指导、行业和国防部的互动、对代表性不足的高中和本科生的宣传以及研究和领导力培训的专业发展活动,重点关注多学科教育。技术描述:该项目将解决重大挑战,彻底改变我们对电荷光生和新兴固体的理解-状态传输现象,以使来自有机材料的IR光能够光到电转换。为了实现这一目标,研究团队将在理论、计算、合成、光谱学和器件制造、工程和物理之间建立一个闭环。革命性的从头算和含时量子化学计算,结合非绝热动力学将为第一次提供详细的洞察相关的有机材料与复杂的激子,振动,极化和自旋性质的红外激发。系统的理论合成光谱方法将开发和应用于基准这些新的理论方法和相关的分子设计与新兴的功能和连贯的准粒子动力学跨越多个时空的时间尺度。这将与基本的电光物理和器件性能相关,从而实现新的功能。这些新的基础设计原则将与实验验证的物理结构-性能模型和数据驱动的机器学习方法相结合,以模拟新的聚合物结构,快速筛选候选材料,提高性能,并创建新的材料库。这将为整个IR中的共轭聚合物创建一个全面的材料基因组。因此,该项目将使有机电子器件具有全新的科学能力和革命性性能,成为变革性技术的核心推动者。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoxiang Hu其他文献
Enhanced space efficient secret sharing for implicit data security.
增强空间效率的秘密共享,实现隐式数据安全。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Guoxiang Hu;Xiaobo Wu;Xiaodong Yang;Shudong Li - 通讯作者:
Shudong Li
Performance of conventional MRI and endoscopy in assessing complete tumor response following immunotherapy-based neoadjuvant therapy for rectal cancer
常规磁共振成像(MRI)和内窥镜检查在评估基于免疫疗法的新辅助治疗后直肠癌完全肿瘤反应方面的性能
- DOI:
10.1016/j.ejrad.2025.112267 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:3.300
- 作者:
Gengyun Miao;Jingjing Liu;Wentao Tang;Lechi Ye;Lamei Deng;Tianyong Xu;Mengjiang He;Wei Su;Jiyuan Zhang;Shaohua Lu;Lingli Chen;Haoxiang Xuan;Fei Liang;Guoxiang Hu;Shengxiang Rao;Mengsu Zeng;Liheng Liu - 通讯作者:
Liheng Liu
Comprehensive investigation of the interactions between natural rubber and lignin by molecular dynamics simulation
通过分子动力学模拟对天然橡胶和木质素之间的相互作用进行综合研究
- DOI:
10.1016/j.ijbiomac.2025.143252 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.500
- 作者:
Hua Long;Junjie Lei;Kunfeng Liu;Guoxiang Hu;Fangjun Chen;Xiaowen Liu;Weifeng Liu;Qingang Xiong - 通讯作者:
Qingang Xiong
An unidirectional threshold proxy re-signature scheme
一种单向门限代理重签名方案
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Guoxiang Hu;Xiaodong Yang;Caifen Wang - 通讯作者:
Caifen Wang
Investigation into the characteristics of bagasse processed with 3C-DES and the production of chemimechanical pulp for pulp molded
用 3C-DES 处理蔗渣的特性及生产用于纸浆模塑的化学机械浆的研究
- DOI:
10.1016/j.jclepro.2024.141652 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:10.000
- 作者:
Yikui Zhu;Long Li;Yansu Hou;Chuan Xu;Guoxiang Hu;Yi Man;Vasilevich Sergey Vladimirovich;Jun Li;Qingang Xiong - 通讯作者:
Qingang Xiong
Guoxiang Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoxiang Hu', 18)}}的其他基金
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Continuing Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
- 批准号:
2323968 - 财政年份:2023
- 资助金额:
$ 34.63万 - 项目类别:
Standard Grant