Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
基本信息
- 批准号:2323470
- 负责人:
- 金额:$ 48.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Atomically thin two-dimensional (2D) materials can host intriguing quantum properties not found in their bulk counterparts. Furthermore, stacking 2D materials with control over the twist angles between adjacent layers provides a versatile way to obtain novel quantum materials with unprecedented properties. Such “twistronic” materials can have applications in electronics, photonics and quantum information science and technologies. However, with the new degrees of freedom, the materials design parameter space becomes exceedingly large, posing a significant challenge to predictably design and precisely make materials to enable such unique properties. In this DMREF project, the collaborative team from University of Pennsylvania, University of Wisconsin-Madison, and Northeastern University will use computer aided deep learning models and theoretical tools to predict designer twistronic materials prepared in specific states and guide the unique self-assembled crystal growth to engineer twist angles in different 2D materials. The team will perform property measurements to characterize these systems and also extend the ideas to quantum photonics to assemble on-chip devices. Results from synthesis, characterization and device measurements will be fed back to the theoretical models for establishing a self-consistent and tightly integrated research for further discovery of new designer twistronic materials with precisely controlled responses that can enable a new paradigm for quantum materials research with applications in computing, communications, imaging and sensing. Interdisciplinary research activities will be integrated with educational and outreach initiatives by involving students at all levels from diverse backgrounds in the collaborative research project with emphasis on quantum materials and photonics. Technical Description: Modern quantum materials are typically designed by engineering symmetries combined with strong spin-orbit coupling at the atomic and lattice length scales. In two-dimensional (2D) materials with chiral symmetry complemented by many-body interactions such as interlayer coupling, controlling the interlayer twist angle offers a promising strategy to achieve novel quantum properties such as flat bands, topological phases, and large nonlinear optical responses. However, two major challenges impede the progress in “twistronic” materials: 1) the dramatic increase in the degrees of freedom of the systems makes it prohibitively difficult to predict the material compositions, crystal phases and interlayer twists needed to achieve a particular quantum phase; and 2) the current material fabrication method consisting of exfoliating and reassembling 2D material layers with manual control over the interlayer twist angles is a laborious process with low yields. In this DMREF project, a highly interdisciplinary team will break the fundamental limitation of designing twistronic materials via deep learning-based symmetry and topological engineering of materials and metamaterials. Starting from a quantum paradigm, the atomic scale symmetry and topology in 2D materials will be optimized for targeted chiral responses. Guided by theory, multilayer twisted 2D materials will be synthesized with rational control over interlayer twist angles, compositions, and crystal phases to realize novel and predictable quantum properties. New knowledge will be generated to enable the rational design of quantum twistronic materials with highly predictive power to demonstrate novel chiral optoelectronic responses, which will also be extended to quantum photonic systems. These advances can enable the next generation of electronics and optical devices such as on-chip coherent chiral emitters, entangled photon emission and detection with precisely controlled responses. The interdisciplinary project will provide an excellent educational opportunity for training graduate, undergraduate and K-12 students on the important concepts of geometry, crystal structures and quantum physics with an emphasis on increasing the participation of underrepresented groups. Funding for the award is from the Mathematical and Physical Sciences (MPS) Divisions of Materials Research (DMR) and Chemistry (CHE) through the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:原子薄的二维(2D)材料可以拥有在其大块对应物中没有的有趣的量子特性。此外,通过控制相邻层之间的扭转角来堆叠2D材料提供了一种获得具有前所未有特性的新型量子材料的通用方法。这种“双电子”材料可以应用于电子学、光子学和量子信息科学和技术。然而,随着新的自由度,材料设计参数空间变得非常大,对可预测地设计和精确地制造材料以实现这种独特的性能提出了重大挑战。在这个DMREF项目中,来自宾夕法尼亚大学,威斯康星大学麦迪逊分校和东北大学的合作团队将使用计算机辅助深度学习模型和理论工具来预测在特定状态下制备的设计师双电子材料,并指导独特的自组装晶体生长以设计不同2D材料的扭曲角。该团队将进行属性测量来表征这些系统,并将这些想法扩展到量子光子学,以组装芯片上的器件。合成、表征和器件测量的结果将反馈到理论模型中,以建立自洽和紧密集成的研究,进一步发现具有精确控制响应的新型设计师双电子材料,从而为量子材料研究提供新的范式,并应用于计算、通信、成像和传感。跨学科研究活动将与教育和推广活动相结合,让来自不同背景的各级学生参与合作研究项目,重点是量子材料和光子学。技术说明:现代量子材料通常通过工程对称性结合原子和晶格长度尺度上的强自旋轨道耦合来设计。在具有手征对称性的二维(2D)材料中,通过多体相互作用(如层间耦合),控制层间扭转角提供了一种有前途的策略,以实现新的量子特性,如平带,拓扑相位和大的非线性光学响应。然而,两个主要挑战阻碍了“双电子”材料的进展:1)系统自由度的急剧增加使得难以预测实现特定量子相所需的材料组成、晶相和层间扭曲;和2)目前的材料制造方法包括剥离和重新组装2D材料层,Angels是一种费力的方法,产率低。在这个DMREF项目中,一个高度跨学科的团队将通过基于深度学习的对称性和材料和超材料的拓扑工程来打破设计双电子材料的根本限制。从量子范例开始,二维材料中的原子尺度对称性和拓扑结构将针对目标手性响应进行优化。在理论指导下,通过合理控制层间扭曲角、成分和晶相来合成多层扭曲二维材料,以实现新颖和可预测的量子特性。将产生新的知识,使量子双电子材料的合理设计具有高度的预测能力,以证明新的手性光电响应,这也将扩展到量子光子系统。这些进展可以使下一代电子和光学设备,如芯片上相干手性发射器,纠缠光子发射和检测具有精确控制的响应。该跨学科项目将为培训研究生,本科生和K-12学生提供一个极好的教育机会,重点是增加代表性不足的群体的参与。该奖项的资金来自数学和物理科学(MPS)材料研究(DMR)和化学(CHE)部门通过设计材料革命和工程师我们的未来(DMREF)计划。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Jin其他文献
Mathematical model for pressure losses in the hemodialysis graft vascular circuit.
血液透析移植血管回路中压力损失的数学模型。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Jones;Song Jin;A. Kantak;D. Bell;W. D. Paulson - 通讯作者:
W. D. Paulson
Data-driven pre-stack AVO inversion method based on fast orthogonal dictionary
基于快速正交字典的数据驱动叠前AVO反演方法
- DOI:
10.1016/j.petrol.2021.108362 - 发表时间:
2021-01 - 期刊:
- 影响因子:0
- 作者:
Yaojun Wang;Yu Liu;Bin She;Guangmin Hu;Song Jin - 通讯作者:
Song Jin
Compound relaxation oscillations connected by pulse-shaped explosion
- DOI:
10.7498/aps.69.20191812 - 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Song Jin;Wei Meng-Ke;Jiang Wen-An;Zhang Xiao-Fang;Han Xiu-Jing;Bi Qin-Sheng - 通讯作者:
Bi Qin-Sheng
Managing availability improvement efforts with importance measures and optimization
通过重要性衡量和优化来管理可用性改进工作
- DOI:
10.1093/imaman/15.2.161 - 发表时间:
2004 - 期刊:
- 影响因子:1.7
- 作者:
C. R. Cassady;E. Pohl;Song Jin - 通讯作者:
Song Jin
Network Utility Maximization in Wireless Networks Over Fading Channels With Uncertain Distribution
无线网络中分布不确定的衰落信道上的网络效用最大化
- DOI:
10.1109/lcomm.2017.2653122 - 发表时间:
2017-01 - 期刊:
- 影响因子:0
- 作者:
Song Jin;Rongfei Fan;Gongpu Wang;Xiangyuan Bu - 通讯作者:
Xiangyuan Bu
Song Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Jin', 18)}}的其他基金
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
- 批准号:
2247519 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
CAS: Design and Mechanistic Understanding of Selective Electrocatalysts Based on Earth-Abundant Metal Compounds
CAS:基于地球储量丰富的金属化合物的选择性电催化剂的设计和机理理解
- 批准号:
1955074 - 财政年份:2020
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Creation, Detection, and Manipulation of Isolated Magnetic Skyrmions in Nanowires for Magnetic Storage Applications
用于磁存储应用的纳米线中孤立的磁性斯格明子的创建、检测和操作
- 批准号:
1609585 - 财政年份:2016
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Screw Dislocation-Driven Growth of Complex Nanomaterials
螺旋位错驱动的复杂纳米材料的生长
- 批准号:
1508558 - 财政年份:2015
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Detection and Manipulation of Magnetic Skyrmion Domains in Silicide and Germanide Nanowires for Spintronic Applications
用于自旋电子学应用的硅化物和锗化物纳米线中磁斯格明子域的检测和操纵
- 批准号:
1231916 - 财政年份:2012
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Fundamental Investigation and Development of Screw Dislocation-Driven Nanowire Growth
螺旋位错驱动纳米线生长的基础研究和发展
- 批准号:
1106184 - 财政年份:2011
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery
合作研究:NSF/DOE 热电合作伙伴关系:基于丰富硅化物材料的高性能热电器件,用于汽车废热回收
- 批准号:
1048625 - 财政年份:2010
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
CAREER: Synthesis, Characterization and Physical Properties of One-Dimensional Rare Earth Chalcogenide Nanomaterials
职业:一维稀土硫族化物纳米材料的合成、表征和物理性能
- 批准号:
0548232 - 财政年份:2006
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
相似国自然基金
复杂电子产品超精密加工及检测关键技术研究与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合成生物学的动物底盘品种优化及中试应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
运用组学整合技术探索萆薢分清散联合化疗治疗晚期胰腺癌的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
九里香等提取物多靶向制剂抗肺癌的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
升血小板方治疗原发免疫性血小板减少症的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
八髎穴微波热疗在女性膀胱过度活动症治疗中的价值研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 miR-455-5p 介导的氧化应激机制探讨糖尿病视网膜病变中医分型治疗的临床研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 UPLC-Q-TOF-MS/MS 分析的 异功散活性成分评价及提取工艺研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无创电针对于痉挛型双瘫脑 瘫患儿的有效性与安全性研究:一项随机 单盲前瞻性队列研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
弹压式手法与体外冲击波治疗肱骨外上髁炎的对比研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
- 批准号:
2323968 - 财政年份:2023
- 资助金额:
$ 48.5万 - 项目类别:
Standard Grant