Decision-Embedded Deep Learning for Transit Systems

交通系统决策嵌入式深度学习

基本信息

  • 批准号:
    2409847
  • 负责人:
  • 金额:
    $ 43.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

This award support research that investigates the impacts of deep learning on decision-making and the development of a new type of learning paradigm where decision models are directly integrated into deep learning model design, with an explicit focus on transit system applications. It aims to help transit decision-makers understand the impacts of deep learning models on their decision-making outcomes such as transit timetable design and bus motion control. It also aims to offer transit researchers and practitioners a novel framework for developing deep learning models with verifiable decision quality in both normal and adversarial (e.g., malicious cyberattacks, sensor malfunctions, and extreme weather conditions) scenarios. The outcomes of this project will open new research areas in both fundamental methodologies and civil infrastructure applications. The project will offer interdisciplinary education and research training opportunities and new deep-learning-related courses to undergraduate and graduate students. It will also involve under-represented minority students at the secondary, undergraduate, and graduate levels through course projects, research assistantships and internship opportunities.This research project integrates deep learning theories with knowledge and methods from transportation engineering to generate new knowledge on the interplay between learning-based prediction and transit decision-making. Theoretical bounds identified through this research projct will assist transit agencies in designing deep learning models, such as choosing the right sample size and identifying the appropriate model architecture, to optimize transit decision-making quality. A new deep learning paradigm will be created to overcome the limitations of existing works, thereby assuring optimal decision-making outcomes in transit systems. This researched paradigm intends to leverage decision errors to update parameters in deep learning models so that they move toward optimal and reliable decisions directly. This paradigm could not only benefit transportation systems but also transform many other infrastructure systems such as power distribution and communications where parameter prediction and decision-making are currently largely siloed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持研究深度学习对决策的影响,以及开发一种新型的学习范式,将决策模型直接集成到深度学习模型设计中,并明确关注交通系统应用。它旨在帮助公交决策者了解深度学习模型对其决策结果的影响,例如公交时刻表设计和公交车运动控制。它还旨在为交通研究人员和从业者提供一个新的框架,用于开发在正常和对抗中具有可验证决策质量的深度学习模型(例如,恶意网络攻击、传感器故障和极端天气条件)场景。该项目的成果将在基础方法和民用基础设施应用方面开辟新的研究领域。该项目将为本科生和研究生提供跨学科教育和研究培训机会以及新的深度学习相关课程。该研究项目将深度学习理论与交通工程的知识和方法相结合,以产生关于基于学习的预测与交通决策之间相互作用的新知识。通过本研究项目确定的理论界限将有助于运输机构设计深度学习模型,例如选择正确的样本大小和确定适当的模型架构,以优化运输决策质量。将创建一个新的深度学习范式,以克服现有工作的局限性,从而确保交通系统的最佳决策结果。这种研究范式旨在利用决策错误来更新深度学习模型中的参数,以便它们直接朝着最佳和可靠的决策方向发展。这一范例不仅可以使交通系统受益,还可以改变许多其他基础设施系统,如配电和通信,这些系统目前在很大程度上是孤立的参数预测和决策。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiwei Chen其他文献

Numerical Scheme for Predicting Chloride Diffusivity of Concrete
预测混凝土氯离子扩散率的数值方案
  • DOI:
    10.1061/(asce)mt.1943-5533.0003883
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hailong Wang;Zhiwei Chen;Jian Zhang;Jianjun Zheng;Xiaoyan Sun;Jianhua Li
  • 通讯作者:
    Jianhua Li
Umls-based analysis of medical terminology coverage for tags in diabetes-related blogs
基于UMLS的糖尿病相关博客标签医学术语覆盖率分析
  • DOI:
    10.9776/16249
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe He;Min Sook Park;Zhiwei Chen
  • 通讯作者:
    Zhiwei Chen
Tea Bud Detection and 3D Pose Estimation in the Field with a Depth Camera Based on Improved YOLOv5 and the Optimal Pose-Vertices Search Method
基于改进的 YOLOv5 和最优姿态顶点搜索方法的深度相机现场茶芽检测和 3D 位姿估计
  • DOI:
    10.3390/agriculture13071405
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwei Chen;Jianneng Chen;Yang Li;Zhiyong Gui;Taojie Yu
  • 通讯作者:
    Taojie Yu
Asymptotic Problems Related to Smoluchowski-Kramers Approximation
  • DOI:
  • 发表时间:
    2006-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwei Chen
  • 通讯作者:
    Zhiwei Chen
Field-induced slow magnetic relaxation of two 1-D compounds containing six-coordinated cobalt(ii) ions: influence of the coordination geometry
含有六配位钴(ii)离子的两种一维化合物的场致慢磁弛豫:配位几何的影响
  • DOI:
    10.1039/c8qi00388b
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Zhiwei Chen;Lei Yin;Xiuna Mi;Suna Wang;Fan Cao;Zhenxing Wang;Yunwu Li;Jing Lu;Jianmin Dou
  • 通讯作者:
    Jianmin Dou

Zhiwei Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhiwei Chen', 18)}}的其他基金

RAPID: Developing an Interactive Dashboard for Collecting and Curating Traffic Data after the March 26, 2024 Francis Scott Key Bridge Collapse
RAPID:开发交互式仪表板,用于收集和管理 2024 年 3 月 26 日 Francis Scott Key 大桥倒塌后的交通数据
  • 批准号:
    2426947
  • 财政年份:
    2024
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Standard Grant
RAPID: Impact of Highway Infrastructure Failures on Transit Usage: The Case of the 11 June 2023 I-95 Bridge Collapse in Philadelphia, Pennsylvania
RAPID:高速公路基础设施故障对交通使用的影响:以 2023 年 6 月 11 日宾夕法尼亚州费城 I-95 大桥倒塌事件为例
  • 批准号:
    2333548
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Standard Grant

相似国自然基金

Embedded Internet体系结构及应用研究
  • 批准号:
    69873007
  • 批准年份:
    1998
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
  • 批准号:
    2348983
  • 财政年份:
    2023
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Continuing Grant
Embedded sensor fusion deep network for road user detection
用于道路用户检测的嵌入式传感器融合深度网络
  • 批准号:
    570655-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Alliance Grants
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
  • 批准号:
    2131175
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Standard Grant
Respiratory Motion-Embedded Deep Learning Model for Local Failure Prediction and Individualized Radiation Dose Prescription
用于局部故障预测和个体化辐射剂量处方的呼吸运动嵌入式深度学习模型
  • 批准号:
    454424
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Fellowship Programs
EDGE - Adaptive Deep Learning Hardware for Embedded Platforms
EDGE - 适用于嵌入式平台的自适应深度学习硬件
  • 批准号:
    EP/V034111/1
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Research Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
  • 批准号:
    2131214
  • 财政年份:
    2021
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Standard Grant
EAGER: Embedded Deep Neural Nets for Predicting Reynolds Stresses in Complex Flows
EAGER:用于预测复杂流中雷诺应力的嵌入式深度神经网络
  • 批准号:
    1940551
  • 财政年份:
    2019
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Standard Grant
Deep Learning with Low Precision Quantization and Its Optimization on Embedded Vision Applications
低精度量化深度学习及其在嵌入式视觉应用中的优化
  • 批准号:
    525060-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
  • 批准号:
    1652703
  • 财政年份:
    2017
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Continuing Grant
Highly Efficient Embedded Systems Architecture for Deep Learning Edge-Computing
用于深度学习边缘计算的高效嵌入式系统架构
  • 批准号:
    16K00083
  • 财政年份:
    2016
  • 资助金额:
    $ 43.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了