EAGER: Embedded Deep Neural Nets for Predicting Reynolds Stresses in Complex Flows
EAGER:用于预测复杂流中雷诺应力的嵌入式深度神经网络
基本信息
- 批准号:1940551
- 负责人:
- 金额:$ 29.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Engineers rely on computational simulation of turbulent flows prior to costly experimental testing to design automobiles, ships, jet engines, wind turbine arrays, and many other flow systems. Realistic turn-around times from concept to solution requires using approximate models to represent the effects of turbulence in the design process. Direct numerical simulations capturing all details of the flow are too expensive for practical full-scale systems, and standard turbulence models are unable to accurately predict the complex, three-dimensional flows pervasive throughout engineering systems. Contemporary machine learning algorithms are creating a paradigm shift in the information that can be gleaned from data and the scale of the data sets that can be efficiently processed. The goal of this project is to improve turbulence models using a data-driven approach which leverages the massive data sets produced by direct numerical simulation of the flows. The fundamental hypothesis of this research is that a machine learning model which accurately predicts the turbulent stresses for a given mean flow field will improve simulation results when implemented in a Reynolds-Averaged Navier-Stokes code. This project will develop improved models for the anisotropy tensor and terms in the turbulent kinetic energy transport equation using deep neural networks. Neural networks will be trained using only direct numerical simulation data and implemented directly in a computational fluid dynamics solver so that the predictions are independent of errors in any baseline model: a substantial advancement over existing discrepancy-based methods. Development of interpretability methods will elevate neural networks from black box tools to trustable models with clearer links between predictions and the underlying flow structures. Techniques for identifying flow regions where the neural net is poorly trained will produce robust machine-learned models that do not degrade computational fluid dynamics predictions below baseline model performance. Our approach also introduces corrective terms into the basic governing equations. Therefore, the lessons learned will provide a framework for future modeling work in any mechanics-based engineering discipline. The models will be tested using experimental data for a number of industrially relevant flows that have caused difficulty for conventional models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工程师们在昂贵的实验测试之前依靠湍流的计算模拟来设计汽车、船舶、喷气发动机、风力涡轮机阵列和许多其他流动系统。从概念到解决方案的实际周转时间需要使用近似模型来表示设计过程中湍流的影响。直接数值模拟捕捉所有细节的流动是太昂贵的实际全尺寸的系统,标准的湍流模型无法准确预测复杂的,三维流动遍布整个工程系统。当代机器学习算法正在从数据中收集的信息以及可以有效处理的数据集规模中创造范式转变。该项目的目标是使用数据驱动方法改进湍流模型,该方法利用直接数值模拟产生的大量数据集。 本研究的基本假设是,一个机器学习模型,准确地预测湍流应力为一个给定的平均流场将改善模拟结果时,在一个平均Navier-Stokes代码实现。该项目将使用深度神经网络开发湍流动能传输方程中各向异性张量和项的改进模型。神经网络将仅使用直接数值模拟数据进行训练,并直接在计算流体动力学求解器中实现,以便预测与任何基线模型中的误差无关:这是对现有基于差异的方法的重大进步。 可解释性方法的发展将把神经网络从黑盒工具提升到可信赖的模型,在预测和底层流结构之间建立更清晰的联系。用于识别神经网络训练不良的流动区域的技术将产生鲁棒的机器学习模型,该模型不会将计算流体动力学预测降低到基线模型性能以下。我们的方法还引入了校正项的基本控制方程。因此,经验教训将提供一个框架,为未来的建模工作,在任何机械为基础的工程学科。 该模型将使用实验数据进行测试,用于一些工业相关的流动,这些流动给传统模型带来了困难。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Eaton其他文献
Deep Bleeder Acoustic Coagulation (DBAC)—part II: in vivo testing of a research prototype system
深放气声凝固 (DBAC) — 第二部分:研究原型系统的体内测试
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Michael Sekins;S. R. Barnes;L. Fan;Jerry D. Hopple;S. Hsu;John Kook;Chi;C. Maleke;Xiaozheng Zeng;Romain Moreau;Alexis Ahiekpor;G. Funka;John Eaton;Keith Wong;S. Keneman;S. Mitchell;B. Dunmire;J. Kucewicz;F. Clubb;Matthew W. Miller;L. Crum - 通讯作者:
L. Crum
THU-324 Does steatotic liver disease influence treatment response and clinical outcomes in primary biliary cholangitis?
THU - 324脂肪性肝病是否会影响原发性胆汁性胆管炎的治疗反应和临床结局?
- DOI:
10.1016/s0168-8278(25)01004-9 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Ellina Lytvyak;Aldo J Montano-Loza;Bettina Hansen;Eugene Wong;Laurent Lam;Pierre-Antoine Soret;Sara Lemoinne;Gideon M. Hirschfield;Aliya Gulamhusein;Albert Pares;Ignasi Olivas;María Carlota Londoño;Sergio Rodriguez-Tajes;John Eaton;Karim T Osman;Christoph Schramm;Marcial Sebode;Ansgar Lohse;George Dalekos;Nikolaos Gatselis;Christophe Corpechot - 通讯作者:
Christophe Corpechot
OS078 - North American evaluation of 2519 patients with primary sclerosing cholangitis: longitudinal patterns of disease activity identify and validate stable and progressive phenotypes
OS078 - 北美对 2519 例原发性硬化性胆管炎患者的评估:疾病活动的纵向模式确定并验证稳定型和进展型表型
- DOI:
10.1016/s0168-8278(22)00525-6 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:33.000
- 作者:
Marwa Ismail;John Eaton;Aliya Gulamhusein;Morven Cunningham;Christina Plagiannakos;Bettina Hansen;Gideon Hirschfield - 通讯作者:
Gideon Hirschfield
Methodologies for surveying plant communities in artificial channels
- DOI:
10.1023/a:1003881517387 - 发表时间:
1999-11-01 - 期刊:
- 影响因子:2.500
- 作者:
David Hatcher;John Eaton;Mary Gibson;Rick Leah - 通讯作者:
Rick Leah
Evaluation of Tofacitinib in Primary Sclerosing Cholangitis and Associated Colitis: A Multicenter, Retrospective Study
托法替布在原发性硬化性胆管炎及相关结肠炎中的评估:一项多中心、回顾性研究
- DOI:
10.1016/j.cgh.2023.01.014 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:12.000
- 作者:
Ida Schregel;Guilherme P. Ramos;Stephanie Ioannou;Emma Culver;Martti Färkkilä;Christoph Schramm;John Eaton;Cynthia Levy;Olivier Chazouilleres;Tobias Müller;Jeremy Nayagam;Deepak Joshi;Ehud Zigmond;Oren Shibolet;Joost P.H. Drenth;Frank Hoentjen;Anja Geerts;Tobias J. Weismüller;Taotao Zhou - 通讯作者:
Taotao Zhou
John Eaton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Eaton', 18)}}的其他基金
Collaborative Research: Measurement of Particle Aggregation in Laboratory-scale Flows for Improved Models of Volcanic Ash Fallout and Entrainment
合作研究:测量实验室规模流动中的颗粒聚集,以改进火山灰沉降和夹带模型
- 批准号:
1756068 - 财政年份:2018
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
EAGER: Particle Concentration Measurements in Turbulent Flows using Magnetic Resonance Imaging
EAGER:使用磁共振成像测量湍流中的颗粒浓度
- 批准号:
1662422 - 财政年份:2017
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
SGER: Magnetic Resonance Velocimetry and Thermometry for Study of Complex Turbulent Flows
SGER:用于研究复杂湍流的磁共振测速和测温
- 批准号:
0432478 - 财政年份:2004
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
Dissertation Enhancement: Turbulence Modification in Particle-Laden Channel Flows
论文增强:充满颗粒的通道流中的湍流修改
- 批准号:
9908692 - 财政年份:1999
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
Attention of Gas Phase Turbulence by Dispersed Particles
分散粒子对气相湍流的关注
- 批准号:
9312496 - 财政年份:1994
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
Interactive Software for Self-Paced Instruction on Laboratory Instrumentation and Computerized Data Acquisition
用于实验室仪器和计算机数据采集自定进度教学的交互式软件
- 批准号:
9053617 - 财政年份:1991
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
The Interaction between Turbulence and Dispersed Particles in Fully Developed Channel Flow
充分发展的通道流中湍流与分散粒子之间的相互作用
- 批准号:
9005998 - 财政年份:1990
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
Small Grants for Exploratory Research: Rapid Heat Transfer Coefficient Measurement in a Computer Integrated Manufacturing Environment
用于探索性研究的小额资助:计算机集成制造环境中的快速传热系数测量
- 批准号:
9014814 - 财政年份:1990
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Experimental Fluid Mechanics
总统青年研究员奖:实验流体力学
- 批准号:
8351417 - 财政年份:1984
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
Central Computer For an Integrated Laboratory Computer System
集成实验室计算机系统的中央计算机
- 批准号:
8104740 - 财政年份:1982
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
相似国自然基金
Embedded Internet体系结构及应用研究
- 批准号:69873007
- 批准年份:1998
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Decision-Embedded Deep Learning for Transit Systems
交通系统决策嵌入式深度学习
- 批准号:
2409847 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
2348983 - 财政年份:2023
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
Embedded sensor fusion deep network for road user detection
用于道路用户检测的嵌入式传感器融合深度网络
- 批准号:
570655-2021 - 财政年份:2022
- 资助金额:
$ 29.94万 - 项目类别:
Alliance Grants
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
- 批准号:
2131175 - 财政年份:2021
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
Respiratory Motion-Embedded Deep Learning Model for Local Failure Prediction and Individualized Radiation Dose Prescription
用于局部故障预测和个体化辐射剂量处方的呼吸运动嵌入式深度学习模型
- 批准号:
454424 - 财政年份:2021
- 资助金额:
$ 29.94万 - 项目类别:
Fellowship Programs
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
- 批准号:
2131214 - 财政年份:2021
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
EDGE - Adaptive Deep Learning Hardware for Embedded Platforms
EDGE - 适用于嵌入式平台的自适应深度学习硬件
- 批准号:
EP/V034111/1 - 财政年份:2021
- 资助金额:
$ 29.94万 - 项目类别:
Research Grant
Deep Learning with Low Precision Quantization and Its Optimization on Embedded Vision Applications
低精度量化深度学习及其在嵌入式视觉应用中的优化
- 批准号:
525060-2018 - 财政年份:2018
- 资助金额:
$ 29.94万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
1652703 - 财政年份:2017
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
Highly Efficient Embedded Systems Architecture for Deep Learning Edge-Computing
用于深度学习边缘计算的高效嵌入式系统架构
- 批准号:
16K00083 - 财政年份:2016
- 资助金额:
$ 29.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)