Conference: Amplituhedra, Cluster Algebras and Positive Geometry

会议:幅面体、簇代数和正几何

基本信息

  • 批准号:
    2412346
  • 负责人:
  • 金额:
    $ 4.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The conference "Amplituhedra, Cluster Algebras and Positive Geometry" will be held on May 29-31 2024 at the Harvard Center of Mathematical Sciences and Applications (CMSA). In recent years, a remarkable paradigm shift has occurred in our understanding of quantum observables in particle physics and cosmology, revealing their emergence from underlying novel mathematical objects known as positive geometries. The conference will center on the amplituhedron, the first and major example of a positive geometry, which describes particle interactions in a certain quantum field theory (QFT). We aim to explore connections between the amplituhedron and cluster algebras, a mathematical theory with broad applications across various areas of mathematics and mathematical physics. The conference will also actively engage and empower junior researchers and women, ensuring their integral presence and impactful contributions to the conference.More precisely, building on the work of Lusztig and Postnikov on the positive Grassmannian, the physicists Arkani-Hamed and Trnka introduced the amplituhedron in 2013 as a geometric object that "explains" the so-called BCFW recurrence for computing scattering amplitudes in N = 4 super Yang Mills theory (SYM). Simultaneously, cluster algebras – originally introduced by Fomin and Zelevinsky to study total positivity – have been revealed to have a crucial role in describing singularities of N = 4 SYM scattering amplitudes. Thus, one can use ideas from quantum field theory to connect cluster algebras to positive geometries, and in particular to the amplituhedron. Additionally, QFT can also be used to discover new examples of positive geometries. Our program will bring together a wide range of mathematicians and physicists working on adjacent areas both to draw new connections within algebraic combinatorics and geometry and to advance our physical understanding of scattering amplitudes and QFT. The conference website is https://cmsa.fas.harvard.edu/event/amplituhedra2024/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2024年5月29-31日,在哈佛大学数学科学与应用中心(CMSA)举行了题为《Amplituhedra,簇代数与正几何》的会议。近年来,在粒子物理和宇宙学中,我们对量子可观测的理解发生了显著的范式转变,揭示了它们是从被称为正几何的底层新数学对象中出现的。会议将集中在振幅多面体上,这是正几何的第一个也是主要的例子,它描述了特定量子场论(QFT)中的粒子相互作用。我们的目标是探索振幅体和簇代数之间的联系,这是一种在数学和数学物理的各个领域都有广泛应用的数学理论。会议还将积极吸引和授权初级研究人员和女性,确保他们的完整存在和对会议的有影响力的贡献。更准确地说,物理学家Arkani-Hamed和Trnka在Lusztig和Postnikov关于正Grassman的工作的基础上,于2013年引入了振幅多面体作为一个几何对象,用于在N=4超杨Mills理论(SYM)中“解释”所谓的BCFW递推,用于计算散射幅度。同时,团簇代数--最初由Fomin和Zlevinsky用来研究全正性--在描述N=4 SYM散射振幅的奇异性方面起着至关重要的作用。因此,人们可以使用量子场论的思想来将团簇代数与正几何联系起来,特别是与振幅面联系起来。此外,QFT还可以用来发现正几何的新例子。我们的计划将汇集在相邻领域工作的广泛的数学家和物理学家,以在代数组合学和几何学中建立新的联系,并促进我们对散射幅度和QFT的物理理解。会议网站是https://cmsa.fas.harvard.edu/event/amplituhedra2024/This奖,反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Williams其他文献

Root polytopes, flow polytopes, and order polytopes
根多胞体、流多胞体和序多胞体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Rietsch;Lauren Williams
  • 通讯作者:
    Lauren Williams
The Prescribing and Education of Naloxone in a Large Academic Medical Center
大型学术医疗中心纳洛酮的处方和教育
The Magic Number Conjecture for the $m=2$ amplituhedron and Parke-Taylor identities
$m=2$ 幅面体和 Parke-Taylor 恒等式的幻数猜想
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Parisi;M. Sherman;Ran Tessler;Lauren Williams
  • 通讯作者:
    Lauren Williams
383 - Physiology of Alpps: Liver Growth after Portal Vein Ligation Correlates with the Degree of Neo-Collateralization between the Growing Lobe and the Deportalized Liver
  • DOI:
    10.1016/s0016-5085(17)34028-3
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca A. Deal;Charles Fredericks;Lauren Williams;Edie Y. Chan;Daniel J. Deziel;Martin Hertl;Erik Schadde
  • 通讯作者:
    Erik Schadde
Rhombic staircase tableaux and Koornwinder polynomials
  • DOI:
    10.1007/s00209-024-03596-4
  • 发表时间:
    2024-10-08
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Sylvie Corteel;Olya Mandelshtam;Lauren Williams
  • 通讯作者:
    Lauren Williams

Lauren Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Williams', 18)}}的其他基金

Interactions of Combinatorics and Physics
组合学和物理学的相互作用
  • 批准号:
    2152991
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
  • 批准号:
    1854316
  • 财政年份:
    2019
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
Interfaces of Combinatorics and Physics
组合数学和物理学的接口
  • 批准号:
    1854512
  • 财政年份:
    2019
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
CAREER: Cluster algebras, total positivity, and physical combinatorics
职业:簇代数、总正性和物理组合学
  • 批准号:
    1049513
  • 财政年份:
    2011
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship in the Mathematical Sciences
数学科学博士后研究奖学金
  • 批准号:
    0502364
  • 财政年份:
    2005
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Fellowship Award
Identification of Exemplary Rural Initiatives Using Technology to Enhance Science and Mathematics Learning
确定利用技术增强科学和数学学习的示范性农村举措
  • 批准号:
    9610324
  • 财政年份:
    1997
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Fixed Amount Award

相似海外基金

Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Standard Grant
The Combinatorics of Positroids and Amplituhedra
正类和幅面体的组合学
  • 批准号:
    557353-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The Combinatorics of Positroids and Amplituhedra
正类和幅面体的组合学
  • 批准号:
    557353-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了