Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers

开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群

基本信息

  • 批准号:
    2412341
  • 负责人:
  • 金额:
    $ 15.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This award supports two projects. The first is to develop methods for testing Einstein's theory of relativity in one of the most extreme environments in the universe: near the horizon of a black hole. Einstein's theory predicts that gravitational waves emitted by black holes should consist of specific frequencies, similar to how a chorus consists of multiple singers signing at different pitches. Gravitational waves are detectable here on Earth with NSF's LIGO detector. This project will use LIGO data to determine if the chorus of gravitational waves emitted by a black hole is exactly as Einstein predicted, or if the black hole "sings" an unexpected tune. Such tests may lead to new discoveries in physics, giving us a better understanding of the fundamental workings of the universe. The second component is to develop a network of Apple Silicon computers to search for new gravitational-waves in LIGO data. Such a network has the potential to make searching for new signals substantially faster and at very low cost. This will make it easier for lesser-resourced universities and undergraduate-focused colleges to directly contribute to gravitational-wave astronomy, broadening the appeal and access to fundamental STEM research in the US. The award provides support for students, who will gain widely-applicable data science skills that are of great national need.This award supports the development of an open-source, Python-based transdimensional Markov-chain Monte Carlo sampler that will naturally identify the set of observable quasi-normal modes emitted by a black hole that is formed in binary black hole mergers. This will be applied to new gravitational-wave detections. Key science questions to be addressed include: are overtones of the dominant mode observable at merger, and if so, which ones? Are other sub-dominant modes observable? If more than one mode is observable, are they consistent with general relativity? In order to answer such questions (and to do any science with gravitational waves), candidate signals must first be identified. Currently this is done by performing a matched-filter search using large numbers of CPUs on data-center clusters. Previous efforts to utilize GPUs have been hampered by the need to transfer data between the CPU and GPU. New "Systems on a Chip" (SoC) such as the Apple Silicon processors side-step this issue, as memory is shared between the CPU and GPU cores. This award will fund the construction, software development, and testing of a cluster of SoC processors. The goal is to perform searches significantly faster and for much lower cost than what is currently done.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持两个项目。第一个是开发在宇宙中最极端的环境之一:黑洞视界附近测试爱因斯坦相对论的方法。爱因斯坦的理论预测,黑洞发出的引力波应该由特定的频率组成,类似于合唱团由多个歌手以不同的音高签名组成。引力波在地球上可以用NSF的LIGO探测器探测到。该项目将利用LIGO数据来确定黑洞发出的引力波合唱是否与爱因斯坦预测的完全一样,或者黑洞是否“唱”出了意想不到的曲调。这样的测试可能会导致物理学的新发现,让我们更好地了解宇宙的基本运作。第二部分是开发一个苹果硅计算机网络,以在LIGO数据中搜索新的引力波。这样的网络有可能使搜索新信号的速度大大加快,成本非常低。这将使资源较少的大学和本科院校更容易直接为引力波天文学做出贡献,扩大美国基础STEM研究的吸引力和获取途径。该奖项为学生提供支持,他们将获得广泛适用的数据科学技能,这是国家的巨大需求。该奖项支持开发一个开源的,基于Python的transdimensional马尔可夫链蒙特卡罗采样器,将自然地识别由二元黑洞合并形成的黑洞发射的一组可观察的准正常模式。这将应用于新的引力波探测。要解决的关键科学问题包括:在合并时可观察到主导模式的泛音吗?如果是,是哪些泛音?其他次主导模式是否可观察到?如果不止一种模式是可观测的,它们与广义相对论一致吗?为了回答这些问题(以及进行任何与引力波有关的科学研究),必须首先确定候选信号。目前,这是通过在数据中心集群上使用大量CPU执行匹配过滤器搜索来实现的。以前利用GPU的努力受到CPU和GPU之间传输数据的需要的阻碍。新的“片上系统”(SoC),如苹果硅处理器回避了这个问题,因为内存在CPU和GPU内核之间共享。该奖项将资助SoC处理器集群的构建、软件开发和测试。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Collin Capano其他文献

Towards accelerated nuclear-physics parameter estimation from binary neutron star mergers: Emulators for the Tolman-Oppenheimer-Volkoff equations
通过双中子星合并加速核物理参数估计:托尔曼-奥本海默-沃尔科夫方程的模拟器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brendan T. Reed;Rahul Somasundaram;Soumi De;Cassandra L. Armstrong;Pablo Giuliani;Collin Capano;Duncan A. Brown;I. Tews
  • 通讯作者:
    I. Tews

Collin Capano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Ultra-efficient electric boats
超高效电动船
  • 批准号:
    10099049
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Collaborative R&D
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Research Grant
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
  • 批准号:
    EP/Y002482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Research Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Standard Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 15.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了