CAREER: Electrochemical pumping with high-temperature ionomers for challenging gas separations
职业:使用高温离聚物进行电化学泵送,以应对具有挑战性的气体分离
基本信息
- 批准号:2426358
- 负责人:
- 金额:$ 57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-12-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydrogen is an important energy vector and chemical feedstock and is expected to see wide-spread adoption because of its ability to decarbonize difficult sectors of the U.S. economy – e.g., fertilizer production, metal refining/steel production, and powering heavy duty vehicle transportation. Furthermore, hydrogen is a cost-effective energy storage solution for intermittent renewable electricity generation and when long-term seasonal energy storage is required. Meeting ambitious goals of greenhouse gas and carbon emission reduction necessitates the maturation of electrochemical technologies that generate, store, and distribute hydrogen. This project seeks to understand how electrode polymeric binder materials in electrochemical hydrogen pumps (EHPs) affect the efficiency performance for hydrogen purification from challenging gas mixtures that contain low hydrogen concentrations (1% to 20%). This is important because it is posited that U.S.’s existing natural gas pipelines may have the ability to store and distribute hydrogen from centralized production facilities. Leveraging existing infrastructure can reduce the cost of hydrogen to end users as hydrogen storage and distribution make up a large portion of the cost of hydrogen today. However, endpoint use applications necessitate pure hydrogen at high pressures. Hence, EHPs are promising technology to separate hydrogen from gas mixtures while simultaneously compressing it. Advancing materials’ performance and durability for electrochemical hydrogen pumps, such as electrode binders, can reduce capital costs for EHPs while also improving their energy efficiency. Electrochemical processes are poised to decarbonize chemical processes and is paramount to train future engineers proficient in electrochemical engineering and electrochemical systems integration. This project will commission the first electrochemical unit operation, an EHP, in Penn State’s Unit Operations Laboratory to give students hands-on training with electrochemical systems. Outreach activities for this project will engage and recruit individuals from rural communities in central Pennsylvania to teach them about sustainable chemical manufacturing using electrochemical systems.The overall goal of this fundamental research project aims to understand how electrode ionomer binders’ composition and processing influence hydrogen diffusivity and hydrogen oxidation/evolution reaction kinetics in high-temperature polymer electrolyte membrane (HT-PEM) electrochemical hydrogen pumps (EHPs). With the advent of ion-pair HT-PEMs and phosphonic acid ionomer electrode binders, preliminary experiments demonstrated hydrogen separations from syngas, and other reformed hydrocarbons with varying hydrogen and carbon monoxide concentrations, to +99.3% hydrogen at 1 A cm-2. In these experiments, it was observed that cell polarization was largely governed by hydrogen content in the gas mixture feed because CO poisoning was minimized. Addressing EHP cell polarization with gas feeds containing low hydrogen content requires new electrode binders that promote hydrogen diffusivity and foster better electrocatalyst utilization. This project will establish structure-property relationships that correlate ionomer composition and processing to reaction kinetics-transport properties. These ionomer electrochemical properties will be probed as thin films on interdigitated electrode arrays decorated with nanoscale electrocatalysts afforded from block copolymer templating. EHP studies with membrane electrode assemblies containing the new ionomers will be used for understanding cell polarization behavior for purifying hydrogen from gas mixtures with low hydrogen content.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氢气是一种重要的能源载体和化学原料,由于其能够使美国经济的困难部门脱碳,预计将得到广泛采用,例如,化肥生产、金属精炼/钢铁生产以及为重型车辆运输提供动力。此外,对于间歇性可再生发电和需要长期季节性储能的情况,氢气是一种具有成本效益的储能解决方案。实现温室气体和碳减排的宏伟目标需要成熟的电化学技术来产生,储存和分配氢。该项目旨在了解电化学氢泵(EHP)中的电极聚合物粘合剂材料如何影响氢纯化的效率性能,这些氢纯化来自含有低氢浓度(1%至20%)的具有挑战性的气体混合物。这一点很重要,因为据推测,美国“。美国现有的天然气管道可能具有储存和分配来自集中生产设施的氢的能力。利用现有的基础设施可以降低最终用户的氢成本,因为氢的储存和分配占当今氢成本的很大一部分。然而,终端应用需要高压下的纯氢。因此,EHP是一种很有前途的技术,可以从气体混合物中分离氢气,同时压缩氢气。提高电化学氢泵材料的性能和耐用性,如电极粘合剂,可以降低EHP的资本成本,同时提高其能源效率。电化学过程有望使化学过程脱碳,对培养精通电化学工程和电化学系统集成的未来工程师至关重要。该项目将在宾夕法尼亚州立大学的单元操作实验室委托第一个电化学单元操作,EHP,为学生提供电化学系统的实践培训。该项目的推广活动将吸引并招募来自宾夕法尼亚州中部农村社区的个人,教授他们使用电化学系统进行可持续化学制造。该基础研究项目的总体目标旨在了解电极离聚物粘合剂的组成和加工如何影响高温聚合物电解质膜(HT-PEM)中的氢扩散率和氢氧化/析氢反应动力学电化学氢泵(EHP)。随着离子对HT-PEM和膦酸离聚物电极粘合剂的出现,初步实验证明了从合成气和具有不同氢气和一氧化碳浓度的其它重整烃中分离氢气,在1A cm-2下达到+99.3%氢气。在这些实验中,观察到电池极化主要受气体混合物进料中的氢含量控制,因为CO中毒最小化。用含有低氢含量的气体进料解决EHP电池极化需要新的电极粘合剂,其促进氢扩散性并促进更好的电催化剂利用。本项目将建立结构-性能关系,将离聚物的组成和加工与反应动力学-传输性能联系起来。这些离聚物的电化学性能将被探测为薄膜上的叉指电极阵列装饰从嵌段共聚物模板提供的纳米级电催化剂。EHP研究的膜电极组件含有新的离聚物将用于了解电池极化行为净化氢气的气体混合物与低氢含量。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Arges其他文献
Data-mining the Ubuntu Linux Distribution for bug analysis and resolution
- DOI:
- 发表时间:
2012-08 - 期刊:
- 影响因子:0
- 作者:
Christopher Arges - 通讯作者:
Christopher Arges
Christopher Arges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Arges', 18)}}的其他基金
CAREER: Electrochemical pumping with high-temperature ionomers for challenging gas separations
职业:使用高温离聚物进行电化学泵送,以应对具有挑战性的气体分离
- 批准号:
2143056 - 财政年份:2022
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
Nanobipolar junction interfaces for ion-exchange membrane and resin materials for electrochemical systems
用于电化学系统的离子交换膜和树脂材料的纳米双极连接界面
- 批准号:
1703307 - 财政年份:2017
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
相似海外基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 57万 - 项目类别:
Fellowship
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Electrochemical Profiling of Extracellular Vesicles (EP4EVs)
细胞外囊泡 (EP4EV) 的电化学分析
- 批准号:
EP/Y002458/1 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Research Grant
METzero - Bringing the water sector towards Net-Zero using Microbial Electrochemical Technologies (METs)
METzero - 利用微生物电化学技术 (MET) 将水务行业带向净零
- 批准号:
EP/X040356/1 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Research Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
- 批准号:
2339405 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Continuing Grant
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
Standard Grant
In-situ & operando organic electrochemical transistors monitored by non-destructive spectroscopies for organic CMOS-like neuromorphic circuits (ICONIC)
原位
- 批准号:
10104091 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
$ 57万 - 项目类别:
EU-Funded