Nanobipolar junction interfaces for ion-exchange membrane and resin materials for electrochemical systems
用于电化学系统的离子交换膜和树脂材料的纳米双极连接界面
基本信息
- 批准号:1703307
- 负责人:
- 金额:$ 31.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1703307 ArgesWith increasing integration of renewable energy sources that provide emission-free electrical power, electrochemical technologies may soon extend beyond electric automobiles to also impact water treatment and chemical production. A familiar example of an electrochemical cell is the battery, in which electrons are released from a chemical species that has stored electrochemical energy. The electrons travel via a controlled pathway to complete the electrical circuit and provide electricity. As the electrons are negatively charged, positively charged ions (for example, battery acid) must simultaneously converse a physical barrier to maintain charge neutrality. A solid-state polymer electrolyte separator provides these controlled and separate pathways that simultaneously channel electrons and ions. In an environment that is often quite corrosive and reactive, this separator must be chemically, electrochemically, thermally, and mechanically stable. To minimize unwanted energy and power losses, resistances to the transfer of electrons must also be minimized, which can be accomplished via molecular-level design of the separator. This project focuses on molecular design and optimization of a relatively unexplored class of polymer electrolyte separators, called bipolar membranes. A bipolar membrane incorporates a junction of positively and negatively charged molecules at a shared interface for water splitting electrochemical reactions. Electrochemical water splitting enables conversion of transient renewable power to chemical energy for long term storage. This project will engineer the bipolar junction on a molecular-level scale to minimize energy losses, with potential impact to a number of electrochemical technologies.This project aims to overcome some of the current limitations of bipolar membranes by correlating interfacial area in the bipolar junction to water-splitting kinetics and mass transport related resistances of water and ion species. Uncovering this correlation is anticipated to yield lower resistant bipolar membranes that translate to lower energy footprint electrochemical reactor-separator processes. The central hypothesis of the project posits that an inverse, commensurate relationship exists between cell overpotential for water dissociation and bipolar junction interfacial area. Testing the central hypothesis will be accomplished by fabricating precisely defined bipolar junction interfaces via two approaches: i.) constructing 2D bipolar junctions on substrate surfaces through block copolymer lithography and ii.) nanopatterning bulk membrane surfaces through nanostructured molds afforded from block copolymer templates. The expected outcomes will reveal how the salient structural features of bipolar junction interfaces govern electrochemical cell performance when splitting water. Finally, the project will contribute to the training of a future STEM workforce prepared to address future challenges in the water-energy nexus, and it will spark 8th and 9th grade students' interest in math with outreach activities that illustrate the utility of algebra principles to materials design.
随着提供零排放电力的可再生能源的日益整合,电化学技术可能很快就会扩展到电动汽车以外的领域,也会影响水处理和化工生产。一个熟悉的电化学电池的例子是电池,其中电子从储存了电化学能量的化学物质中释放出来。电子通过一条受控制的路径来完成电路并提供电力。当电子带负电荷时,带正电荷的离子(例如电池酸)必须同时反转物理屏障以保持电荷中性。固态聚合物电解质分离器提供了这些控制和分离的途径,同时通道电子和离子。在腐蚀性和反应性很强的环境中,这种分离器必须具有化学、电化学、热稳定性和机械稳定性。为了最大限度地减少不必要的能量和功率损失,电子转移的阻力也必须最小化,这可以通过分离器的分子级设计来实现。该项目专注于一种相对未开发的聚合物电解质隔膜的分子设计和优化,称为双极膜。双极膜包含带正电荷和带负电荷的分子在共享界面上的连接,用于水分解电化学反应。电化学水分解使瞬时可再生能源转化为化学能,以长期储存。该项目将在分子水平上设计双极结,以最大限度地减少能量损失,并对许多电化学技术产生潜在影响。该项目旨在通过将双极结的界面面积与水分裂动力学和水和离子的质量传递相关阻力联系起来,克服双极膜目前的一些局限性。揭示这种相关性有望产生更低的电阻双极膜,转化为更低的能量足迹电化学反应器-分离器过程。该项目的中心假设假设水解离的细胞过电位与双极结界面面积之间存在反向的、相称的关系。验证中心假设将通过两种方法来精确定义双极结界面:i.)通过嵌段共聚物光刻技术在衬底表面构建二维双极结;ii.)通过嵌段共聚物模板提供的纳米结构模具对大块膜表面进行纳米图案化。预期的结果将揭示两极结界面的显著结构特征如何在分解水时控制电化学电池的性能。最后,该项目将有助于培养未来的STEM劳动力,为应对未来的水-能源关系挑战做好准备,并将通过展示代数原理在材料设计中的效用的外展活动激发八年级和九年级学生对数学的兴趣。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advancing electrodeionization with conductive ionomer binders that immobilize ion-exchange resin particles into porous wafer substrates
- DOI:10.1038/s41545-020-0052-z
- 发表时间:2020-03
- 期刊:
- 影响因子:11.4
- 作者:V. M. Palakkal;L. Valentino;Q. Lei;Subarna Kole;Yupo J. Lin;C. Arges
- 通讯作者:V. M. Palakkal;L. Valentino;Q. Lei;Subarna Kole;Yupo J. Lin;C. Arges
Peptide-Modified Electrode Surfaces for Promoting Anion Exchange Ionomer Microphase Separation and Ionic Conductivity
用于促进阴离子交换离聚物微相分离和离子电导率的肽修饰电极表面
- DOI:10.1021/acsmaterialslett.9b00173
- 发表时间:2019
- 期刊:
- 影响因子:11.4
- 作者:Su, Zihang;Kole, Subarna;Harden, Leigh C.;Palakkal, Varada M.;Kim, ChulOong;Nair, Greshma;Arges, Christopher G.;Renner, Julie N.
- 通讯作者:Renner, Julie N.
Bipolar membrane polarization behavior with systematically varied interfacial areas in the junction region
- DOI:10.1039/d0ta10602j
- 发表时间:2021-01-28
- 期刊:
- 影响因子:11.9
- 作者:Kole, Subarna;Venugopalan, Gokul;Arges, Christopher G.
- 通讯作者:Arges, Christopher G.
(Invited) Structured Electrochemical Materials Fabricated from Directed Self-Assembly of Block Copolymers and Advanced Lithography
(特邀)嵌段共聚物定向自组装和先进光刻技术制备的结构化电化学材料
- DOI:10.1149/08008.0971ecst
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Zhang, Le;Cao, Chi;Yakimov, Alexandrina;Arges, Christopher George
- 通讯作者:Arges, Christopher George
Promoting water-splitting in Janus bipolar ion-exchange resin wafers for electrodeionization
- DOI:10.1039/c9me00179d
- 发表时间:2020-06-01
- 期刊:
- 影响因子:3.6
- 作者:Jordan, Matthew L.;Valentino, Lauren;Arges, Christopher G.
- 通讯作者:Arges, Christopher G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Arges其他文献
Data-mining the Ubuntu Linux Distribution for bug analysis and resolution
- DOI:
- 发表时间:
2012-08 - 期刊:
- 影响因子:0
- 作者:
Christopher Arges - 通讯作者:
Christopher Arges
Christopher Arges的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Arges', 18)}}的其他基金
CAREER: Electrochemical pumping with high-temperature ionomers for challenging gas separations
职业:使用高温离聚物进行电化学泵送,以应对具有挑战性的气体分离
- 批准号:
2426358 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Continuing Grant
CAREER: Electrochemical pumping with high-temperature ionomers for challenging gas separations
职业:使用高温离聚物进行电化学泵送,以应对具有挑战性的气体分离
- 批准号:
2143056 - 财政年份:2022
- 资助金额:
$ 31.38万 - 项目类别:
Continuing Grant
相似国自然基金
单分子FRET用于DNA折纸阵列中的anti-junction可控机械化
学耦合研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
- 批准号:82370954
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Holliday Junction解离酶RuvA在分枝杆菌噬菌体抗性中的作用与分子机理
- 批准号:82072246
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Holliday junction解离酶Moc1调控叶绿体拟核分离的结构和分子机制研究
- 批准号:31971222
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
冰岛硫化叶菌新型ATP酶PINA的生化性质与结构及其在同源重组修复中的作用研究
- 批准号:31670061
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
硫化叶菌Holliday junction解离酶Hje的体内功能与作用机制研究
- 批准号:31470184
- 批准年份:2014
- 资助金额:88.0 万元
- 项目类别:面上项目
小胶质细胞通过缝隙连接释放过量谷氨酸的机制研究
- 批准号:81301092
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 31.38万 - 项目类别:
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 31.38万 - 项目类别:
Formation mechanism and transport properties of carbon nanotube molecular junctions by chirality transformation
手性变换碳纳米管分子结的形成机制及输运特性
- 批准号:
23H01796 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
遺伝性肝内胆汁うっ滞症の発症と病態におけるTight Junction分子の役割の解析
紧密连接分子在遗传性肝内胆汁淤积症发病和病理中的作用分析
- 批准号:
23K06485 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mitochondrial positioning regulates redox-signaling during cell migration
线粒体定位调节细胞迁移过程中的氧化还原信号
- 批准号:
10520211 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Prime editing for Crumbs homologue 1 (CRB1) Inherited Retinal Dystrophies
Crumbs 同源物 1 (CRB1) 遗传性视网膜营养不良的 Prime 编辑
- 批准号:
10636325 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Basis and Function of Lateral Assembly of Cadherin Molecules in Adhesive Junctions of Humans and Model Organisms
人类和模型生物粘附连接中钙粘蛋白分子横向组装的基础和功能
- 批准号:
10715056 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
- 批准号:
10727888 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
$ 31.38万 - 项目类别: