CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
基本信息
- 批准号:2426835
- 负责人:
- 金额:$ 17.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extinction of biological species is accelerating rapidly. Significant uncertainty is often involved in predicting the extinction or population decline of species, even with high-resolution information. Changes in the taxonomic classification of biological species is a key challenge that impacts both biodiversity conservation and policy decisions. The taxonomy is described in words and these words provide an opportunity to use natural language processing and machine learning (ML) to clarify species relationships and provide novel insights into extinction risk by addressing the variability in species taxonomy. Developing an accurate and scalable machine learning and artificial intelligence (ML/AI) for “taxonomic intelligence” can help support the robustness of conservation decision making. This is important because the taxonomic classification can move a group of organisms in or out of consideration for legal protection. AI can help in this classification and support coordination of conservation projects.The goal of this project is to develop AI/ML techniques to provide novel insights into extinction risk, by projecting different contingent outcomes for species distributions and risks under different taxonomic perspectives. It is critical that the derived insights be understandable to humans, to safely translate these outcomes into operational recommendations. Biodiversity data, which include taxonomical and geospatial data, pose unique challenges to AI in that they are heterogeneous, structurally complex, and frequently change. This project aims to address these challenges with a novel approach combining Natural Language Processing (NLP) from the textual data of relevant scientific publications, and automated inductive and deductive reasoning, including qualitative spatial reasoning incorporating the taxonomic factor and relevant domain structures, for discovery of human-understandable knowledge for conservation biology applications. In doing so, this project also has the potential to advance AI beyond a single application domain. The research activities to be undertaken in this award include data and knowledge curation with the help of domain experts, and the development and evaluation of the aforementioned AI techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物物种的灭绝迅速加速。即使有高分辨率信息,预测物种的延伸或种群下降也经常涉及明显的不确定性。生物种类分类分类的变化是影响生物多样性保护和政策决策的关键挑战。分类学用文字描述,这些单词提供了使用自然语言处理和机器学习(ML)来澄清开发准确且可扩展的机器学习和人工智能(ML/AI)进行“分类学智能”的机会,这可以帮助支持保护决策的鲁棒性。这很重要,因为分类学分类可以将一组生物移入或不考虑法律保护。人工智能可以帮助保护项目的分类并支持协调。该项目的目的是开发AI/ML技术,通过在不同的分类角度下针对物种分布和风险进行不同的偶然结果,以提供扩展风险的新见解。至关重要的是,对人类的衍生见解是可以理解的,将这些结果安全地转化为运营建议。包括分类学和地理空间数据在内的生物多样性数据对AI构成了独特的挑战,因为它们是异质的,结构上的复杂且经常变化的。该项目旨在通过一种新型方法来解决这些挑战,该方法将自然语言处理(NLP)结合在相关科学出版物的文本数据中,以及自动归纳和演绎推理,包括融合了分类学因素和相关领域结构的定性空间推理,以发现人为理解的人类知识知识对保护生物学应用的发现。这样一来,该项目也有可能将AI超越单个应用程序域。该奖项中要进行的研究活动包括在领域专家的帮助下进行数据和知识策划,以及优先AI技术的发展和评估。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响标准来评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atriya Sen其他文献
On Logicist Agent-Based Economics ?
基于逻辑主义代理的经济学?
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Bringsjord;John Licato;Atriya Sen;Joe Johnson;Alexander Bringsjord;Joshua Taylor - 通讯作者:
Joshua Taylor
Ethical Operating Systems
道德操作系统
- DOI:
10.1007/978-3-319-97226-8_8 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Naveen Sundar Govindarajulu;S. Bringsjord;Atriya Sen;Jean;K. O'Neill - 通讯作者:
K. O'Neill
Atriya Sen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atriya Sen', 18)}}的其他基金
CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
- 批准号:
2246032 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
相似国自然基金
人工湿地铁循环驱动As(III)氧化的过程调控及其强化除砷机制
- 批准号:52370204
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CRII: III: Explainable Artificial Intelligence for Biodiversity Science & Conservation
CRII:III:生物多样性科学的可解释人工智能
- 批准号:
2246032 - 财政年份:2023
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
CRII: III: Robust and Explainable AI Agents with Common Sense
CRII:III:具有常识的鲁棒且可解释的人工智能代理
- 批准号:
2153546 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
CRII: III: Explainable Multi-Source Data Integration with Uncertainty
CRII:III:具有不确定性的可解释多源数据集成
- 批准号:
2153171 - 财政年份:2022
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
III: Small: RareXplain: A Computational Framework for Explainable Rare Category Analysis
III:小:RareXplain:可解释稀有类别分析的计算框架
- 批准号:
2117902 - 财政年份:2021
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Scrutable and Explainable Information Retrieval with Model Intrinsic and Agnostic Approaches
III:小:协作研究:使用模型内在和不可知的方法进行可查和可解释的信息检索
- 批准号:
2007398 - 财政年份:2020
- 资助金额:
$ 17.48万 - 项目类别:
Standard Grant