CRII: III: Robust and Explainable AI Agents with Common Sense
CRII:III:具有常识的鲁棒且可解释的人工智能代理
基本信息
- 批准号:2153546
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project will gain an understanding of how to create Artificial Intelligence (AI) agents that provide commonsense explanations about real-world narratives. Current AI agents lack commonsense mechanisms to explain their judgment of everyday stories and they cannot be applied to novel scenarios. This award will enable AI agents to reason in novel situations and to explain their decisions. The project will focus on two key aspects of stories: understanding situations and judging the adequacy of actions in context. The project will test the ability of AI agents to complete narratives and to provide commonsense explanations on the task of explainable natural language inference. The explainability of AI agents can be expected to improve public trust in AI technologies. Robust and explainable AI with common sense is also critically missing in social AI assistants that aim to increase the participation of children with Autism Spectrum Disorder and the elderly with Alzheimer's dementia. The investigator will design a new set of lectures and a full course on the topic of “AI assistants with common sense”, which will be taught both at USC as well as internationally. Interdisciplinary research will be facilitated via summer internships, and participation in the existing University of Southern California (USC) Center for Knowledge-Powered Interdisciplinary Data Science and NSF Research Experiences for Undergraduates programs. The investigator will partner with USC's Center for Engineering Diversity and Women in Science and Engineering, in order to recruit members of historically underrepresented groups for research on this project. The investigator will partner with USC's K-12 STEM Center to engage K-12 students from historically underrepresented groups.This award will create a paradigm shift in the development of AI agents, by combining advances in neural language modeling with high-level explanations based on logical axioms and commonsense knowledge. State-of-the-art technology is not adequate for this goal: neural methods cannot infer causal links between events and the motivations and goals of the agents directly from narratives, whereas commonsense axioms and knowledge resources alone cannot handle the contextual variations in human language. The team of researchers will build AI agents that use common sense to explain their reasoning. To do so, the researchers will leverage commonsense knowledge and axioms about agent psychology and event causality in order to enrich story corpora. The enriched data will be used to pre-train neuro-symbolic agents to complete open-world narratives and justify their completion with commonsense explanations. The researchers will measure the impact of representative techniques, axiomatic theories, and knowledge dimensions on understanding narratives about situations and actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。该项目将了解如何创建人工智能(AI)代理,提供有关现实世界叙事的常识性解释。目前的人工智能代理缺乏常识机制来解释他们对日常故事的判断,并且无法应用于新的场景。该奖项将使人工智能代理能够在新的情况下进行推理并解释他们的决定。该项目将侧重于故事的两个关键方面:理解情况和判断背景中的行动是否充分。该项目将测试人工智能代理完成叙述的能力,并为可解释的自然语言推理任务提供常识解释。人工智能代理的可解释性有望提高公众对人工智能技术的信任。具有常识的强大且可解释的AI在社交AI助手中也严重缺失,这些助手旨在增加自闭症谱系障碍儿童和阿尔茨海默氏痴呆症老年人的参与。研究人员将设计一套新的讲座和一门关于“具有常识的人工智能助理”的完整课程,这些课程将在南加州大学和国际上教授。跨学科研究将通过暑期实习,并在现有的南加州(USC)知识驱动的跨学科数据科学中心和NSF研究经验的本科生计划参与促进。研究人员将与南加州大学的工程多样性和妇女在科学和工程中心合作,以招募历史上代表性不足的群体的成员进行本项目的研究。研究者将与南加州大学的K-12 STEM中心合作,吸引来自历史上代表性不足的群体的K-12学生。该奖项将通过将神经语言建模的进步与基于逻辑公理和常识知识的高级解释相结合,在人工智能代理的开发中创造范式转变。最先进的技术不足以实现这一目标:神经方法无法直接从叙述中推断事件与代理人的动机和目标之间的因果关系,而常识公理和知识资源本身无法处理人类语言中的上下文变化。研究人员团队将构建使用常识来解释推理的人工智能代理。为此,研究人员将利用有关代理心理学和事件因果关系的常识知识和公理来丰富故事语料库。丰富的数据将用于预训练神经符号代理,以完成开放世界的叙述,并用常识解释证明其完成。研究人员将衡量代表性技术,公理理论和知识维度对理解有关情况和行动的叙述的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Filip Ilievski其他文献
PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales
PINTO:使用提示生成的基本原理进行忠实的语言推理
- DOI:
10.48550/arxiv.2211.01562 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Peifeng Wang;Aaron Chan;Filip Ilievski;Muhao Chen;Xiang Ren - 通讯作者:
Xiang Ren
Consolidating Commonsense Knowledge
巩固常识知识
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Filip Ilievski;Pedro A. Szekely;Jingwei Cheng;Fu Zhang;Ehsan Qasemi - 通讯作者:
Ehsan Qasemi
Multimodal and Explainable Internet Meme Classification
多模式且可解释的互联网迷因分类
- DOI:
10.48550/arxiv.2212.05612 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Thakur;Filip Ilievski;Hông;Alain Mermoud;Zhivar Sourati;Luca Luceri;Riccardo Tommasini - 通讯作者:
Riccardo Tommasini
Does Wikidata Support Analogical Reasoning?
维基数据支持类比推理吗?
- DOI:
10.48550/arxiv.2210.00620 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Filip Ilievski;J. Pujara;K. Shenoy - 通讯作者:
K. Shenoy
Missing Mr. Brown and Buying an Abraham Lincoln - Dark Entities and DBpedia
思念布朗先生并购买亚伯拉罕·林肯 - 黑暗实体和 DBpedia
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Erp;Filip Ilievski;M. Rospocher;P. Vossen - 通讯作者:
P. Vossen
Filip Ilievski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Metadata-guided Imbalance-Modeling for Robust Computational Healthcare
CRII:III:元数据引导的稳健计算医疗保健不平衡建模
- 批准号:
2245920 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311597 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Engineering Ultra-Wide Bandgap III-Nitride Devices for Highly Efficient and Robust Electronics
职业:设计超宽带隙 III 族氮化物器件,实现高效、稳健的电子产品
- 批准号:
2145340 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CRII: III: Advance mathematical theorems for Extreme Value and Risk Measure in Robust Intelligence
CRII:III:鲁棒智能中极值和风险度量的数学定理
- 批准号:
2153329 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135581 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Robust Learning and Inference Protocols for Mitigating Information Pollution
合作研究:III:小型:用于减轻信息污染的鲁棒学习和推理协议
- 批准号:
2135573 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: III: Efficient and Robust Statistical Estimation from Nonlinear Compressed Measurements
CRII:III:通过非线性压缩测量进行高效且稳健的统计估计
- 批准号:
1948133 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Visualizing Robust Features in Vector and Tensor Fields
III:小:可视化矢量和张量场中的鲁棒特征
- 批准号:
1910733 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant