Geometrically optimized projection bases for parametric model reduction for large-scale fluid dynamics systems

用于大型流体动力学系统参数模型简化的几何优化投影基础

基本信息

项目摘要

Fluid dynamics play a fundamental role in modeling a large variety of physical systems. Examples of practical interest include automotive and aeronautical aerodynamics, hydrodynamics and weather and climate modeling. The enormous costs associated with wind tunnel test campaigns using scaled models or real-scale prototypes render the deployment of Computational Fluid Dynamics an indispensable tool for treating industrial fluid flow problems. However, computing flow solutions over a continuous parameter range, say from start to landing of an aircraft or repeatedly within a design optimization loop, leads to numerical problems reaching easily computation times of several weeks. Hence, parametric reduced order modeling of high-dimensional systems becomes essential. Here, the term parametric means that the reduced order model can be adapted efficiently to parameter changes. The most prominent approaches to model order reduction all have in common that the original large-scale model is projected onto suitable subspaces spanned by low-dimensional bases. The projection bases essentially determine the approximation quality of the resulting reduced order models. In order to account for the underlying parametric dependency, it is suggested in the current literature to apply interpolation techniques on matrix manifolds for computing projection bases at arbitrary parameter conditions. The main objective of the proposed research project is to enhance the prediction capabilities of the projection bases by optimizing a suitable goal function on the matrix manifold in question, which actually measures the approximation quality. This multidisciplinary problem can be tackled only by combining tools from numerics and differential geometry, while additionally taking the engineering aspects of the problem into account. It is planned to demonstrate the applicability and benefit of the proposed method for real-life test cases.
流体动力学在模拟各种物理系统中起着基础性的作用。实际感兴趣的例子包括汽车和航空空气动力学,流体动力学和天气和气候建模。与使用比例模型或真实比例原型的风洞测试活动相关的巨大成本使得计算流体动力学的部署成为处理工业流体流动问题的不可或缺的工具。然而,在连续的参数范围内计算流动解决方案,比如从飞机开始到着陆或在设计优化循环内重复计算,导致数值问题很容易达到几周的计算时间。因此,高维系统的参数化降阶建模变得至关重要。这里,术语参数意味着降阶模型可以有效地适应参数变化。最突出的方法,以模型降阶都有一个共同点,即原来的大规模模型投影到合适的子空间由低维基地。投影基基本上决定了所得到的降阶模型的近似质量。为了说明潜在的参数依赖性,在当前的文献中,建议在矩阵流形上应用插值技术来计算任意参数条件下的投影基。拟议的研究项目的主要目标是通过优化一个合适的目标函数的矩阵流形上的问题,这实际上措施的近似质量,以提高预测能力的投影基地。这个多学科的问题只能通过结合数值和微分几何的工具来解决,同时还考虑到问题的工程方面。计划证明所提出的方法在实际测试用例中的适用性和益处。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric Subspace Updates with Applications to Online Adaptive Nonlinear Model Reduction
  • DOI:
    10.1137/17m1123286
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ralf Zimmermann;B. Peherstorfer;K. Willcox
  • 通讯作者:
    Ralf Zimmermann;B. Peherstorfer;K. Willcox
AN ACCELERATED GREEDY MISSING POINT ESTIMATION PROCEDURE
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Ralf Zimmermann其他文献

Dr. Ralf Zimmermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
  • 批准号:
    10114180
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
  • 批准号:
    2307979
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: SHF: A Flexible, Learning-Enabled, and Multi-layer Interconnection Architecture for Optimized On-Chip Communications
CRII:SHF:一种灵活的、支持学习的多层互连架构,用于优化片上通信
  • 批准号:
    2245950
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of individualized optimized neurorehabilitation to promote recovery of motor function after stroke
开发个体化优化神经康复以促进中风后运动功能的恢复
  • 批准号:
    23K10417
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-optimized graph database management system with deep learning
具有深度学习的自优化图数据库管理系统
  • 批准号:
    23H03406
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
'Smart Ventilation' - Novel Real-Time Biosensors and Artificial Intelligence for Optimized Mechanical Ventilation in Human Lungs
“智能通气”——新型实时生物传感器和人工智能,用于优化人肺机械通气
  • 批准号:
    489877
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Structure-based identification of optimized mutant Kir3.4 inhibitors for renoprotection (C07 (A03 + A04))
基于结构的肾脏保护优化突变型 Kir3.4 抑制剂的鉴定 (C07 (A03 A04))
  • 批准号:
    516847250
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Understanding targeted protein degradation for design of optimized therapeutic strategies
了解靶向蛋白质降解以设计优化的治疗策略
  • 批准号:
    BB/X007499/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了