Dynamic-stochastic decision models for multiple alternatives with multiple attributes

具有多个属性的多个备选方案的动态随机决策模型

基本信息

项目摘要

Dynamic-stochastic models, based on the notion of sequential sampling, are commonly used to predict choice behavior and response times in many areas of psychology, from basic perceptual tasks to multidimensional preference and decision making. Typically, these models can only account for binary decisions and unidimensional stimuli. However, many applications require an extension of the sequential sampling mechanism to multi-attribute choice options with multiple alternatives. Formal derivation of model predictions for more complex situations is often difficult or impossible, severely limiting the psychological interpretability and experimental tests of these models. An exception is Multiattribute Decision Field Theory (MDFT), developed in Diederich (1997), based on a matrix approximation of continuous processes, but up to now it has been developed only for binary choices and a pre-determined serial order of attribute processing.The goal of this project is to advance the sequential sampling approach within the class of dynamic-stochastic decision models. To this end, (1) we extend MDFT to include a variety of mechanisms for attribute handling (fixed and random processing order, switching times, and process durations) that constitute different hypotheses about the distribution of attention in stimulus processing. Then follows (2) the development of a decision model for multiple-choice options (Box model) that retains important features of MDFT. Analytical solutions for all models will be strived for.The empirical part of the project will experimentally probe several generalized versions of MDFT. We will explore different aspects of attribute processing in discrimination and choice paradigms. The first series of experiments will test hypotheses about the effect of payoffs, considered as stimulus attribute, on response frequencies in two different perceptual discrimination tasks. The effect of temporal distribution of information on task performance will be studied in a second series of experiments. Finally, the effect of the number of attributes on preference under risk will be investigated in a third experimental series.
基于序贯抽样概念的动态随机模型通常用于预测心理学许多领域的选择行为和反应时间,从基本的感知任务到多维偏好和决策。通常,这些模型只能解释二元决策和一维刺激。然而,许多应用程序需要扩展的顺序抽样机制,多属性选择选项与多个替代品。对于更复杂的情况,模型预测的正式推导通常是困难的或不可能的,严重限制了这些模型的心理可解释性和实验测试。Diederich(1997)提出的多属性决策场理论(Multiattribute Decision Field Theory,MDFT)是一个例外,它基于连续过程的矩阵近似,但到目前为止,它只针对二元选择和属性处理的预定序列顺序。为此,(1)我们扩展了MDFT,以包括各种属性处理机制(固定和随机的处理顺序,切换时间和处理持续时间),这些机制构成了关于刺激处理中注意力分布的不同假设。其次,(2)发展了一个保留了MDFT重要特征的多项选择决策模型(Box模型)。所有模型的解析解将被争取。该项目的实证部分将实验探索MDFT的几个广义版本。我们将探讨不同方面的属性处理的歧视和选择范式。第一组实验将检验两种不同知觉辨别任务中作为刺激属性的报酬对反应频率的影响。信息的时间分布对任务绩效的影响将在第二系列实验中进行研究。最后,将在第三个实验系列中研究属性数量对风险偏好的影响。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decision with multiple alternatives: Geometric models in higher dimensions — the cube model
多种选择的决策:高维几何模型 – 立方体模型
Multi-stage sequential sampling models with finite or infinite time horizon and variable boundaries
具有有限或无限时间范围和可变边界的多阶段顺序采样模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Adele Diederich其他文献

Professorin Dr. Adele Diederich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Adele Diederich', 18)}}的其他基金

Multi-stage decision model: Further developments and empirical tests
多阶段决策模型:进一步发展和实证检验
  • 批准号:
    278410049
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The 2N-ary Choice Tree model for choices between multiple options with multiple attributes: Further developments and empirical test.
用于在具有多个属性的多个选项之间进行选择的 2N 元选择树模型:进一步发展和实证检验。
  • 批准号:
    281130457
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Framing in need determination
确定需求的框架
  • 批准号:
    259014267
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multisensorische Integration: Experimentelle und theoretische Untersuchungen zur Bestimmung eines optimalen Zeitfensters
多感官整合:确定最佳时间窗口的实验和理论研究
  • 批准号:
    211741571
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kriterien und Präferenzen in der Priorisierung medizinischer Leistungen: Eine empirische Untersuchung
医疗服务优先顺序的标准和偏好:一项实证研究
  • 批准号:
    26705437
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Experimentelle und theoretische Untersuchung räumlicher und zeitlicher Regeln der multisensorischen Integration
多感觉统合时空规则的实验和理论研究
  • 批准号:
    5410195
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Taktil-visuelle Interaktion im menschlichen Orientierungsverhalten
人类定向行为中的触觉视觉交互
  • 批准号:
    5126748
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Psychologie
心理学
  • 批准号:
    5123262
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Cube and Disk Models for best-worst tasks and status-quo options
用于最佳/最差任务和现状选项的立方体和磁盘模型
  • 批准号:
    512607743
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于随机模型检测的网络脆弱性分析研究
  • 批准号:
    60573144
  • 批准年份:
    2005
  • 资助金额:
    5.0 万元
  • 项目类别:
    面上项目
二阶段随机优化的并行方法
  • 批准号:
    10161002
  • 批准年份:
    2001
  • 资助金额:
    4.5 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAREER: Enabling Combinatorial Decision Making in Stochastic Environments
职业:在随机环境中实现组合决策
  • 批准号:
    2144285
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mobility-As-A-Service for Resilience Delivery in Power Grids: Stochastic Programming Advancements under Decision-Dependent Uncertainties
用于电网弹性交付的移动即服务:决策相关不确定性下的随机编程进步
  • 批准号:
    2114100
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptable and Robust Multi-Robot Decision Making through Generalized Sequential Stochastic Task Assignment
通过广义顺序随机任务分配进行适应性强的鲁棒多机器人决策
  • 批准号:
    2103817
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
  • 批准号:
    500414-2016
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Probabilistic Modeling and Stochastic Optimization for Effective Demand Response Decision Management under Uncertainties in Emerging Smart Energy Markets
新兴智能能源市场不确定性下有效需求响应决策管理的概率建模和随机优化
  • 批准号:
    1938895
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
  • 批准号:
    500414-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
CoPe EAGER: Addressing Human-Centric Decision-Making Challenges from Coastal Hazards via Integrated Geosciences Modeling and Stochastic Optimization
CoPe EAGER:通过综合地球科学建模和随机优化解决沿海灾害带来的以人为本的决策挑战
  • 批准号:
    1940308
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
  • 批准号:
    500414-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Collective Decision Making in Dynamic Models: Towards the Construction of Dynamic Stochastic Cooperative Game Theory
动态模型中的集体决策:动态随机合作博弈论的构建
  • 批准号:
    17K18561
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了