Adaptable and Robust Multi-Robot Decision Making through Generalized Sequential Stochastic Task Assignment

通过广义顺序随机任务分配进行适应性强的鲁棒多机器人决策

基本信息

  • 批准号:
    2103817
  • 负责人:
  • 金额:
    $ 49.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project envisions teams of multiple robotic systems cooperatively and autonomously executing complex missions in the physical world. These missions include environmental monitoring, search and rescue, and scientific exploration, where robots are tasked to provide timely information to end users. The success of many robotic missions depends on a small number of critical, irreversible, and high-impact decisions. Examples of such decisions include selecting where to deploy aerial robots from ground robots, determining how to deploy communication hardware, and specifying when to execute specific motion behaviors. In current fielded robotic systems, these types of decisions are largely left to human operators, who typically do not have the required situational awareness, reasoning skills, or available time to make these decisions effectively. This work seeks to bridge the gap between current multi-robot systems that require significant human input to make high-impact decisions and future intelligent robotic systems capable of executing the most effective behaviors at the right time and location.The ultimate objective of this project is to develop new algorithmic solutions for making high-impact decisions in heterogeneous multi-robot teams. When reasoning over such decisions, many variables must be considered, such as the mission goals, available actions, environment belief models, future rewards, and the behaviors and capabilities of other robots. Many of these variables carry a significant degree of uncertainty, have a prior belief of their value, and may change based on dynamic conditions and robot observations. New algorithmic solutions for reasoning over this information will be developed by formulating and solving new generalizations of the sequential stochastic assignment problem (SSAP). These SSAP generalizations require reasoning over the uncertain future values of robot actions, accounting for information acquired in situ, exploiting dependencies in the reward distributions, and computing policies in a decentralized manner. Validation will be performed through both simulated and field experiments for marine monitoring and environment exploration scenarios. The developed algorithms will be made publicly available through open source distribution and will help foster ongoing collaborations with marine and environmental scientists.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目设想由多个机器人系统组成的团队在物理世界中协同自主地执行复杂任务。这些任务包括环境监测、搜救和科学探索,机器人的任务是向最终用户提供及时的信息。许多机器人任务的成功取决于少数关键的、不可逆的和高影响的决策。此类决策的示例包括选择从地面机器人部署空中机器人的位置,确定如何部署通信硬件,以及指定何时执行特定的运动行为。在目前的机器人系统中,这些类型的决策主要留给人类操作员,他们通常没有必要的态势感知、推理技能或可用时间来有效地做出这些决策。这项工作旨在弥合当前需要大量人力投入才能做出高影响决策的多机器人系统与未来能够在正确的时间和地点执行最有效行为的智能机器人系统之间的差距。该项目的最终目标是开发新的算法解决方案,以便在异构多机器人团队中做出高影响力的决策。在对此类决策进行推理时,必须考虑许多变量,例如任务目标、可用动作、环境信念模型、未来奖励以及其他机器人的行为和能力。这些变量中的许多具有很大程度的不确定性,对其值具有先验信念,并且可能根据动态条件和机器人观察而变化。通过制定和解决顺序随机分配问题(SSAP)的新推广,将开发用于对这些信息进行推理的新算法解决方案。这些SSAP概括需要对机器人动作的不确定未来值进行推理,考虑原位获取的信息,利用奖励分配中的依赖关系,并以分散的方式计算策略。验证将通过海洋监测和环境勘探情景的模拟和现场实验进行。开发的算法将通过开源分发向公众提供,并将有助于促进与海洋和环境科学家的持续合作。该项目由跨部门机器人基础研究项目支持,由工程(ENG)和计算机与信息科学与工程(CISE)联合管理和资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential Stochastic Multi-Task Assignment for Multi-Robot Deployment Planning
用于多机器人部署规划的顺序随机多任务分配
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geoffrey Hollinger其他文献

Geoffrey Hollinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geoffrey Hollinger', 18)}}的其他基金

CAREER: Topological Planning in Information Space for Intelligent Robotic Systems
职业:智能机器人系统信息空间拓扑规划
  • 批准号:
    1845227
  • 财政年份:
    2019
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
S&AS: INT: Taskable and Adaptable Autonomy for Heterogeneous Marine Vehicles
S
  • 批准号:
    1723924
  • 财政年份:
    2017
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
NRI: FND: Bioinspired Design and Shared Autonomy for Underwater Robots with Soft Limbs
NRI:FND:软肢水下机器人的仿生设计和共享自主权
  • 批准号:
    1734627
  • 财政年份:
    2017
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
Unified Robust Control System Design for Regional Multi-Energy Systems Based on Multi-Dimensional Systems and Dissipativity
基于多维系统和耗散性的区域多能源系统统一鲁棒控制系统设计
  • 批准号:
    23K03910
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
Multi-scale feedbacks for robust organ development
多尺度反馈促进器官的健全发育
  • 批准号:
    10687672
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Robust Multi-Robot Path Planning and Execution on a Large Scale
大规模鲁棒多机器人路径规划和执行
  • 批准号:
    2328671
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
  • 批准号:
    10729965
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2411207
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了