The Physical Exploration Challenge: Robots Learning to Discover, Actuate, and Explore Degreesof Freedom in the World
物理探索挑战:机器人学习发现、驱动和探索世界的自由度
基本信息
- 批准号:260200664
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will equip real-world robotic systems with one of themost interesting aspects of intelligence: an internal drive to learn,i.e., the ability to exhibit behavior that maximizes learning progresstowards an objective. Concretely, we will design robotic systems thatphysically explore their environment by pushing, pulling, and twistingseemingly interesting parts, with the goal of learning how todiscover, actuate, and explore degrees of freedom (DoF) in the world.Our approach is informed by state-of-the-art Machine Learning researchon exploration and active learning, especially the concept ofoptimizing policies for expected information gain. Our real-worldexploration scenario, however, raises fundamental issues that have notpreviously been addressed in existing research. Three open questions define the major research areas of this proposal:(1)~How can we formulate a tractable belief over kinematic structuresthat represents the relevant uncertainties over relevant aspects, suchas the existence of DoF, their properties, and their relationships?What methods can derive information-gain driven exploration strategiesfor these representations, given that perception and actions of theagent are subject to uncertainty and are continuously improved fromexperience? (2)~What perception methods are useful for discoveringand identifying DoF, for forming hypotheses about promisinginteraction points, and for segmentating the scene into rigid bodyhypotheses? (3)~How can we parameterize and optimize motion primitivesfor the objective of successful interaction and manipulation ofdegrees of freedom in the context of exploration?The proposed research addresses a fundamental challenge in theintersection of machine learning and robotics. If successful, webelieve that this will make a transitional change in the way roboticsystems behave, in their autonomy of learning, in the way they groundacquired knowledge, and eventually also in the way they will interactwith humans and play their part in a wide range of applications inindustry and the private sector.
该项目将为现实世界的机器人系统配备智能最有趣的方面之一:内部学习驱动力,即,表现出最大化学习进度的行为的能力。具体地说,我们将设计机器人系统,通过推拉和扭曲看似有趣的部件来物理地探索它们的环境,目的是学习如何发现,驱动和探索世界上的自由度(DoF)。我们的方法受到最先进的机器学习探索和主动学习研究的启发,特别是优化策略以获得预期信息的概念。 然而,我们的真实探索场景提出了一些在现有研究中尚未解决的基本问题。三个开放的问题定义了这个建议的主要研究领域:(1)~我们如何能够制定一个听话的信念在运动学结构,表示相关方面的相关不确定性,如DoF的存在,他们的属性,和他们的关系?什么方法可以得到信息增益驱动的探索strategies为这些表示,鉴于感知和行动的代理是受不确定性和不断改进的经验? (2)~什么感知方法对识别和确定自由度有用,对形成关于有希望的相互作用点的假设有用,以及对将场景分割成刚体假设有用?(3)~我们如何在探索的背景下,为成功的交互和自由度操作的目标,参数化和优化运动连续性?拟议的研究解决了机器学习和机器人技术交叉领域的一个根本挑战。如果成功的话,我们相信这将在机器人系统的行为方式上,在它们的自主学习上,在它们获得知识的方式上,以及最终在它们与人类互动的方式上,在工业和私营部门的广泛应用中发挥作用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Based Selection of Informative Actions for Interactive Perception
基于物理的交互式感知信息动作选择
- DOI:10.1109/icra.2018.8460596
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Clemens Eppner;Roberto Roberto Martín-Martín;Oliver Brock
- 通讯作者:Oliver Brock
Entropy-based strategies for physical exploration of the environment's degrees of freedom
用于环境自由度物理探索的基于熵的策略
- DOI:10.1109/iros.2014.6942623
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Stefan Otte;Johannes Kulick;Marc Toussaint;Oliver Brock
- 通讯作者:Oliver Brock
Achieving robustness by optimizing failure behavior
- DOI:10.1109/icra.2017.7989681
- 发表时间:2017-05
- 期刊:
- 影响因子:0
- 作者:Manuel Baum;O. Brock
- 通讯作者:Manuel Baum;O. Brock
An integrated approach to visual perception of articulated objects
- DOI:10.1109/icra.2016.7487714
- 发表时间:2016-05
- 期刊:
- 影响因子:0
- 作者:R. M. Martin;S. Höfer;O. Brock
- 通讯作者:R. M. Martin;S. Höfer;O. Brock
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Oliver Brock其他文献
Professor Dr. Oliver Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Oliver Brock', 18)}}的其他基金
Photo Cross-linking/mass spectrometry (CLMS) --- Towards a new technology for protein structure determination
光交联/质谱(CLMS)——迈向蛋白质结构测定新技术
- 批准号:
329673113 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Co-design of feedback control and soft morphology for in-hand manipulation
用于手动操作的反馈控制和软形态的协同设计
- 批准号:
405033880 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
Enabling a circular economy for poultry via exploration of metabolism
通过探索新陈代谢实现家禽循环经济
- 批准号:
DE240100802 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
- 批准号:
2409316 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
- 批准号:
2409631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The role of LILRB3-mediated immunomodulation on myeloid cells and exploration of new combination therapy for chronic inflammation and cancer
LILRB3介导的免疫调节对骨髓细胞的作用及慢性炎症和癌症联合治疗的探索
- 批准号:
24K18478 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Avebury Papers: digitisation, exploration and creative re-use of a uniquely important archaeological archive.
埃夫伯里文件:对独特重要的考古档案的数字化、探索和创造性再利用。
- 批准号:
AH/W003619/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant