Robotic-Specific Machine Learning
机器人专用机器学习
基本信息
- 批准号:329426068
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop robotics-specific machine learning methods that enable robots to efficiently learn complex behavior. The requirement for such methods follows directly from the no-free-lunch theorems (Wolpert, 1996) which prove that no machine learning method works better than random guessing when averaged over all possible problems. The only way to improve over random guessing is to restrict the problem space and incorporate prior knowledge about this problem space into the learning method.Of course, there are machine learning methods that apply to a wide range of real world tasks by incorporating fairly general priors, e.g. smoothness. However, even for solving relatively simple problems, such methods already require huge amounts of data and computation. The overall problem of robotics---learning behavior that maps a stream of high-dimensional sensory input to a stream of high-dimensional motor output from sparse feedback---is too complex to be solved by generic machine learning methods using realistic amounts of data and computation. Other approaches avoid this problem by incorporating task-specific prior knowledge, e.g. by engineering features and representations tailored to the robotic task at hand. However, these approaches do not generalize to new tasks.This project proposes a middle ground between general and task-specific approaches to learning robot behavior. The key idea is to incorporate robotics-specific prior knowledge, i.e. priors that are consistent with a wide range of robotic tasks. Applying this idea requires two steps: a) discovering robotics-specific prior knowledge and b) incorporating these priors into machine learning methods. We can discover such priors by looking at the structure inherent in the interactions of robots and the physical world (e.g. physics, embodiment, objectness). To incorporate such priors, we will relate them to internal state representations, which are an intermediate result in the mapping from the robot's sensory input to its motor output. Technically, we will incorporate robotics-specific priors by i) defining appropriate learning objectives and by ii) restricting the hypothesis space. Our work will eliminate the need for task-specific feature engineering while keeping the data and computation requirements at a minimum. As a consequence, this project will enable robots to autonomously learn complex tasks from raw sensory input. We have extensive preliminary work showing the feasibility and the potential of our approach. This project will develop this idea further by:1) Online learning during the interaction2) Solving partially observable tasks by simultaneously learning task-specific state representations and recursive loops to estimate them3) Learning structured state representations that make reinforcement learning more efficient for robotic tasks4) Incrementally learning state representations for multiple related tasks
该项目将开发特定于机器人的机器学习方法,使机器人能够有效地学习复杂的行为。对这种方法的要求直接来自no-free-lunch定理(Wolpert, 1996),该定理证明,当对所有可能的问题进行平均时,没有比随机猜测更好的机器学习方法。改进随机猜测的唯一方法是限制问题空间,并将关于该问题空间的先验知识纳入学习方法中。当然,有一些机器学习方法可以通过结合相当一般的先验(例如平滑)来应用于广泛的现实世界任务。然而,即使是解决相对简单的问题,这些方法也已经需要大量的数据和计算。机器人的整体问题——将高维感官输入流映射到稀疏反馈的高维运动输出流的学习行为——太复杂了,无法通过使用实际数据和计算量的通用机器学习方法来解决。其他方法通过结合任务特定的先验知识来避免这个问题,例如,通过为手头的机器人任务量身定制的工程特征和表示。然而,这些方法并不适用于新的任务。该项目提出了学习机器人行为的一般方法和特定任务方法之间的中间地带。关键思想是结合机器人特定的先验知识,即与广泛的机器人任务一致的先验知识。应用这个想法需要两个步骤:a)发现机器人特定的先验知识,b)将这些先验知识整合到机器学习方法中。我们可以通过观察机器人和物理世界相互作用的内在结构(例如物理、具体化、客观性)来发现这样的先验。为了整合这些先验,我们将它们与内部状态表示联系起来,这是从机器人的感官输入到其电机输出映射的中间结果。从技术上讲,我们将通过i)定义适当的学习目标和ii)限制假设空间来结合机器人特定的先验。我们的工作将消除对特定任务特征工程的需求,同时将数据和计算需求保持在最低限度。因此,该项目将使机器人能够从原始感官输入中自主学习复杂任务。我们已经做了大量的初步工作来证明我们的方法的可行性和潜力。该项目将进一步发展这一想法:1)在交互过程中在线学习2)通过同时学习任务特定的状态表示和递归循环来估计它们来解决部分可观察的任务3)学习结构化状态表示,使强化学习对机器人任务更有效4)增量学习多个相关任务的状态表示
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Oliver Brock其他文献
Professor Dr. Oliver Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Oliver Brock', 18)}}的其他基金
Photo Cross-linking/mass spectrometry (CLMS) --- Towards a new technology for protein structure determination
光交联/质谱(CLMS)——迈向蛋白质结构测定新技术
- 批准号:
329673113 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
The Physical Exploration Challenge: Robots Learning to Discover, Actuate, and Explore Degreesof Freedom in the World
物理探索挑战:机器人学习发现、驱动和探索世界的自由度
- 批准号:
260200664 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Co-design of feedback control and soft morphology for in-hand manipulation
用于手动操作的反馈控制和软形态的协同设计
- 批准号:
405033880 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RESEARCH-PGR: Combining machine learning and experimental analysis to define trichome and root-specific gene regulatory networks in cultivated tomato and related Solanaceae species
RESEARCH-PGR:结合机器学习和实验分析来定义栽培番茄和相关茄科物种中的毛状体和根特异性基因调控网络
- 批准号:
2218206 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Target-specific machine-learning scoring functions for reliable structure-based virtual screening
针对特定目标的机器学习评分功能,用于可靠的基于结构的虚拟筛选
- 批准号:
EP/X012026/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10448093 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development of a patient-specific predictive tool and a regulatory testing machine for transcatheter heart valve replacement
开发用于经导管心脏瓣膜置换术的患者特异性预测工具和监管测试机
- 批准号:
537352-2018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Race/Ethnicity-Specific Algorithms of Chronic Stress Exposures for Preterm Birth Risk: Machine Learning Approach
针对早产风险的慢性压力暴露的种族/民族特定算法:机器学习方法
- 批准号:
10620851 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Machine Learning Augmented Discovery of AAV Capsids for Cell Type Specific Access into Human Neurons and Glia
机器学习增强了 AAV 衣壳的发现,用于特定细胞类型进入人类神经元和神经胶质细胞
- 批准号:
10512547 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Diversity Supplement: Radiation-specific Automated Dental Dose Distributions via Machine-learning based Mapping for Accurate Predictions of (Peri)odontal Problems (RADMAP)
多样性补充:通过基于机器学习的映射实现特定辐射的自动牙科剂量分布,以准确预测(牙周)牙周问题 (RADMAP)
- 批准号:
10602003 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Adapting machine learning methods to detect genetic loci specific to strictly defined MDD
采用机器学习方法来检测严格定义的 MDD 特有的遗传位点
- 批准号:
10196078 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research: Specific Energy-Based Prognosis for Machining Surface Integrity through Integration of Process Physics and Machine Learning
合作研究:通过过程物理和机器学习的集成,基于特定能量的加工表面完整性预测
- 批准号:
2040288 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
RESEARCH-PGR: Predicting Gene-Specific Functional Contributions to Maize Reproduction: A Machine-Learning Approach
RESEARCH-PGR:预测基因特异性对玉米繁殖的功能贡献:一种机器学习方法
- 批准号:
2041384 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant